An application of fuzzy support vectors

John L. Mill, A. Inoue
{"title":"An application of fuzzy support vectors","authors":"John L. Mill, A. Inoue","doi":"10.1109/NAFIPS.2003.1226801","DOIUrl":null,"url":null,"abstract":"Support Vector Machines (SVMs) are a recently introduced Machine Learning technique. SVMs approach binary classification by attempting to find a hyperplane that separates the two categories of training vectors. This hyperplane is expressed as a function of a subset of the training vectors. These vectors are called support vectors. In this paper, we present a method of fuzzifying support vectors based off of the results of an SVM induction. We then propose a method of enhancing SVM induction using these fuzzy support vectors. We finish by presenting a computational example using the IRIS data set.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Support Vector Machines (SVMs) are a recently introduced Machine Learning technique. SVMs approach binary classification by attempting to find a hyperplane that separates the two categories of training vectors. This hyperplane is expressed as a function of a subset of the training vectors. These vectors are called support vectors. In this paper, we present a method of fuzzifying support vectors based off of the results of an SVM induction. We then propose a method of enhancing SVM induction using these fuzzy support vectors. We finish by presenting a computational example using the IRIS data set.
模糊支持向量的应用
支持向量机(svm)是最近出现的一种机器学习技术。支持向量机通过试图找到一个分离两类训练向量的超平面来实现二值分类。这个超平面被表示为训练向量子集的函数。这些向量称为支持向量。本文提出了一种基于支持向量机归纳结果的模糊化支持向量的方法。然后,我们提出了一种利用这些模糊支持向量增强SVM归纳的方法。最后,我们给出了一个使用IRIS数据集的计算示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信