Distributed generation siting and sizing with implementation feasibility analysis

S. Eroshenko, A. Khalyasmaa, S. Dmitriev, A. Pazderin, A. Karpenko
{"title":"Distributed generation siting and sizing with implementation feasibility analysis","authors":"S. Eroshenko, A. Khalyasmaa, S. Dmitriev, A. Pazderin, A. Karpenko","doi":"10.1109/ICPEC.2013.6527749","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of distributed generation siting and sizing optimization with subsequent equipment configuration assessment. The proposed methodology is based on the combination of genetic algorithms and indicative analysis, which gives an opportunity to assess power system interaction with incident infrastructures and take into account technical, economical, regulatory, ecological and other criteria. Two-step algorithm implementation makes the decision process more flexible and comprehensive. The case study is provided for proposed approach verification.","PeriodicalId":176900,"journal":{"name":"2013 International Conference on Power, Energy and Control (ICPEC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Power, Energy and Control (ICPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEC.2013.6527749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper addresses the problem of distributed generation siting and sizing optimization with subsequent equipment configuration assessment. The proposed methodology is based on the combination of genetic algorithms and indicative analysis, which gives an opportunity to assess power system interaction with incident infrastructures and take into account technical, economical, regulatory, ecological and other criteria. Two-step algorithm implementation makes the decision process more flexible and comprehensive. The case study is provided for proposed approach verification.
分布式发电的选址、规模及实施可行性分析
本文通过后续的设备配置评估来解决分布式发电的选址和规模优化问题。提出的方法是基于遗传算法和指示性分析的结合,它提供了一个机会来评估电力系统与事故基础设施的相互作用,并考虑到技术、经济、监管、生态和其他标准。两步算法的实现使决策过程更加灵活和全面。提供了案例研究来验证所建议的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信