Cleanness of a Dubrovin valuation ring

Ida Fitriana Ambarsari, S. Irawati, I. Sulandra, H. Susanto, H. Marubayashi
{"title":"Cleanness of a Dubrovin valuation ring","authors":"Ida Fitriana Ambarsari, S. Irawati, I. Sulandra, H. Susanto, H. Marubayashi","doi":"10.1063/1.5139127","DOIUrl":null,"url":null,"abstract":"An order R in a simple Artinian ring Q is said to be a Dubrovin valuation ring if R is Bezout and R/J(R) is a simple Artinian, where J(R) is the Jacobson radical of R. A ring R with unity is called clean, if every element x ∈ R is clean i.e. for every element x ∈ R there exist an idempotent element e ∈ R and a unit element u ∈ R such that x=e+u. In this article, it will be investigated some properties of clean Dubrovin valuation ring and give some examples related to a Dubrovin valuation ring and a clean ring.An order R in a simple Artinian ring Q is said to be a Dubrovin valuation ring if R is Bezout and R/J(R) is a simple Artinian, where J(R) is the Jacobson radical of R. A ring R with unity is called clean, if every element x ∈ R is clean i.e. for every element x ∈ R there exist an idempotent element e ∈ R and a unit element u ∈ R such that x=e+u. In this article, it will be investigated some properties of clean Dubrovin valuation ring and give some examples related to a Dubrovin valuation ring and a clean ring.","PeriodicalId":209108,"journal":{"name":"PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: Deepening Mathematical Concepts for Wider Application through Multidisciplinary Research and Industries Collaborations","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE 8TH SEAMS-UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2019: Deepening Mathematical Concepts for Wider Application through Multidisciplinary Research and Industries Collaborations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5139127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An order R in a simple Artinian ring Q is said to be a Dubrovin valuation ring if R is Bezout and R/J(R) is a simple Artinian, where J(R) is the Jacobson radical of R. A ring R with unity is called clean, if every element x ∈ R is clean i.e. for every element x ∈ R there exist an idempotent element e ∈ R and a unit element u ∈ R such that x=e+u. In this article, it will be investigated some properties of clean Dubrovin valuation ring and give some examples related to a Dubrovin valuation ring and a clean ring.An order R in a simple Artinian ring Q is said to be a Dubrovin valuation ring if R is Bezout and R/J(R) is a simple Artinian, where J(R) is the Jacobson radical of R. A ring R with unity is called clean, if every element x ∈ R is clean i.e. for every element x ∈ R there exist an idempotent element e ∈ R and a unit element u ∈ R such that x=e+u. In this article, it will be investigated some properties of clean Dubrovin valuation ring and give some examples related to a Dubrovin valuation ring and a clean ring.
杜布罗文估价戒指的清洁度
如果R是Bezout且R/J(R)是一个简单Artinian环,其中J(R)是R的Jacobson根,则称简单Artinian环Q中的一个阶R为Dubrovin赋值环,如果每个元素x∈R是干净的,即对于每个元素x∈R存在一个幂等元素e∈R和一个单位元素u∈R,使得x=e+u。本文将研究干净Dubrovin估值环的一些性质,并给出一些与Dubrovin估值环和干净环相关的例子。如果R是Bezout且R/J(R)是一个简单Artinian环,其中J(R)是R的Jacobson根,则称简单Artinian环Q中的一个阶R为Dubrovin赋值环,如果每个元素x∈R是干净的,即对于每个元素x∈R存在一个幂等元素e∈R和一个单位元素u∈R,使得x=e+u。本文将研究干净Dubrovin估值环的一些性质,并给出一些与Dubrovin估值环和干净环相关的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信