A Fuzzy Approach to Ranking Hyperlinks

Huaxiang Zhang, Jing Lu
{"title":"A Fuzzy Approach to Ranking Hyperlinks","authors":"Huaxiang Zhang, Jing Lu","doi":"10.1109/FSKD.2007.30","DOIUrl":null,"url":null,"abstract":"This paper presents a fuzzy approach to efficiently crawling topic related web pages using reinforcement learning and fuzzy clustering theory. The approach, FOA, takes the delayed reward into account and subsequently labels newly crawled web pages online. To minimize the bad effect of the naive Bayes classifiers, we adopt the fuzzy center-averaged clustering method to label crawled web pages, and using the calculated fuzzy memberships as class weights when calculating the fuzzy averaged Q values that map hyperlinks to future discounted rewards. The candidate hyperlinks are ranked according to their corresponding fuzzy averaged Q values, and the hyperlink with the optimal Q value is the best one to be crawled in the next step. Experiments of topic crawling tasks have shown FOA collects high harvest rate.","PeriodicalId":201883,"journal":{"name":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2007.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a fuzzy approach to efficiently crawling topic related web pages using reinforcement learning and fuzzy clustering theory. The approach, FOA, takes the delayed reward into account and subsequently labels newly crawled web pages online. To minimize the bad effect of the naive Bayes classifiers, we adopt the fuzzy center-averaged clustering method to label crawled web pages, and using the calculated fuzzy memberships as class weights when calculating the fuzzy averaged Q values that map hyperlinks to future discounted rewards. The candidate hyperlinks are ranked according to their corresponding fuzzy averaged Q values, and the hyperlink with the optimal Q value is the best one to be crawled in the next step. Experiments of topic crawling tasks have shown FOA collects high harvest rate.
对超链接进行排名的模糊方法
本文利用强化学习和模糊聚类理论,提出了一种有效抓取主题相关网页的模糊方法。这种方法,FOA,考虑到延迟的奖励,随后将新抓取的网页标记为在线。为了最小化朴素贝叶斯分类器的不良影响,我们采用模糊中心平均聚类方法对抓取的网页进行标记,并在计算将超链接映射到未来折扣奖励的模糊平均Q值时使用计算出的模糊隶属度作为类权重。根据候选超链接对应的模糊平均Q值对候选超链接进行排序,Q值最优的超链接是下一步要爬行的最佳超链接。主题爬行任务的实验表明,FOA的收获率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信