A comparison of OCMPM and OCSVM in motor and sensor fault detection for traction control system

Zhi-wen Chen, Zhuo Chen, Tao Peng, Ketian Liang, Chunhua Yang, Xu Yang
{"title":"A comparison of OCMPM and OCSVM in motor and sensor fault detection for traction control system","authors":"Zhi-wen Chen, Zhuo Chen, Tao Peng, Ketian Liang, Chunhua Yang, Xu Yang","doi":"10.1109/SAFEPROCESS45799.2019.9213386","DOIUrl":null,"url":null,"abstract":"Fault detection is critical to ensure the safe operation of high speed trains. One class support vector machine (OCSVM) and one class minimax probability machine (OCMPM) are two domain-based single class classification methods and commonly used for fault detection. This paper systematically analyzes their training and detecting complexity, principle of optimization and hyperparameter influence of both methods, and compares their performance on motor and sensor fault data from the simulated traction control system of the high speed train. It shows that OCMPM achieves higher fault detection rate than OCSVM given the same false alarm rate. But OCMPM is unfeasible used for real-time fault detection when the training dataset is large.","PeriodicalId":353946,"journal":{"name":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAFEPROCESS45799.2019.9213386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fault detection is critical to ensure the safe operation of high speed trains. One class support vector machine (OCSVM) and one class minimax probability machine (OCMPM) are two domain-based single class classification methods and commonly used for fault detection. This paper systematically analyzes their training and detecting complexity, principle of optimization and hyperparameter influence of both methods, and compares their performance on motor and sensor fault data from the simulated traction control system of the high speed train. It shows that OCMPM achieves higher fault detection rate than OCSVM given the same false alarm rate. But OCMPM is unfeasible used for real-time fault detection when the training dataset is large.
OCMPM与OCSVM在牵引控制系统电机及传感器故障检测中的比较
故障检测是保证高速列车安全运行的关键。一类支持向量机(OCSVM)和一类极小极大概率机(OCMPM)是两种基于域的单类分类方法,是目前常用的故障检测方法。本文系统地分析了两种方法的训练和检测复杂性、优化原理和超参数影响,并比较了两种方法在高速列车仿真牵引控制系统的电机和传感器故障数据上的性能。结果表明,在相同虚警率的情况下,OCMPM比OCSVM具有更高的故障检测率。但当训练数据集较大时,OCMPM算法不适用于实时故障检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信