Component-based Data Layout for Efficient Slicing of Very Large Multidimensional Volumetric Data

Jusub Kim, J. JáJá
{"title":"Component-based Data Layout for Efficient Slicing of Very Large Multidimensional Volumetric Data","authors":"Jusub Kim, J. JáJá","doi":"10.1109/SSDBM.2007.7","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new efficient data layout scheme to efficiently handle out-of-core axis-aligned slicing queries of very large multidimensional volumetric data. Slicing is a very useful dimension reduction tool that removes or reduces occlusion problems in visualizing 3D/4D volumetric data sets and that enables fast visual exploration of such data sets. We show that the data layouts based on typical space-filling curves are not optimal for the out-of-core slicing queries and present a novel component-based data layout scheme for a specialized problem domain, in which it is only required to provide fast slicing at every k-th value, for any k > 1. Our component-based data layout scheme provides much faster processing time for any axis-aligned slicing direction at every k-th value, k > 1, requiring less cache memory size and without any replication of data. In addition, the data layout can be generalized to any high dimension.","PeriodicalId":122925,"journal":{"name":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDBM.2007.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we introduce a new efficient data layout scheme to efficiently handle out-of-core axis-aligned slicing queries of very large multidimensional volumetric data. Slicing is a very useful dimension reduction tool that removes or reduces occlusion problems in visualizing 3D/4D volumetric data sets and that enables fast visual exploration of such data sets. We show that the data layouts based on typical space-filling curves are not optimal for the out-of-core slicing queries and present a novel component-based data layout scheme for a specialized problem domain, in which it is only required to provide fast slicing at every k-th value, for any k > 1. Our component-based data layout scheme provides much faster processing time for any axis-aligned slicing direction at every k-th value, k > 1, requiring less cache memory size and without any replication of data. In addition, the data layout can be generalized to any high dimension.
基于组件的数据布局用于超大多维体积数据的高效切片
本文提出了一种新的高效的数据布局方案,以有效地处理超大多维体积数据的离核轴对齐切片查询。切片是一种非常有用的降维工具,可以消除或减少可视化3D/4D体积数据集中的遮挡问题,并可以对此类数据集进行快速视觉探索。我们证明了基于典型空间填充曲线的数据布局对于核外切片查询并不是最优的,并提出了一种新的基于组件的数据布局方案,用于专门的问题域,其中只需要在每k-th值上提供快速切片,对于任何k > 1。我们基于组件的数据布局方案为任何轴对齐的切片方向在每k-th值(k > 1)上提供了更快的处理时间,需要更少的缓存内存大小,并且不需要任何数据复制。此外,数据布局可以推广到任何高维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信