Detection and localization of complex SEEG patterns in epileptic seizures using time-frequency analysis

M. Shamsollahi, L. Senhadji, R. Le Bouquin-Jeannes
{"title":"Detection and localization of complex SEEG patterns in epileptic seizures using time-frequency analysis","authors":"M. Shamsollahi, L. Senhadji, R. Le Bouquin-Jeannes","doi":"10.1109/TFSA.1996.546697","DOIUrl":null,"url":null,"abstract":"The authors applied signal detection techniques based on time-frequency signal analysis on depth EEG recordings in order to detect and to localize some patterns in the time-frequency plane. This paper deals with a particular pattern representing a discharge activity in the ictal phase. Beside the detection techniques using fixed-kernel Time-Frequency Representation (Auto TFR and Cross TFR) presented here, a new technique using Signal-Dependent TFR is proposed and a comparison of results is given.","PeriodicalId":415923,"journal":{"name":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1996.546697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The authors applied signal detection techniques based on time-frequency signal analysis on depth EEG recordings in order to detect and to localize some patterns in the time-frequency plane. This paper deals with a particular pattern representing a discharge activity in the ictal phase. Beside the detection techniques using fixed-kernel Time-Frequency Representation (Auto TFR and Cross TFR) presented here, a new technique using Signal-Dependent TFR is proposed and a comparison of results is given.
使用时频分析检测和定位癫痫发作的复杂SEEG模式
作者将基于时频信号分析的信号检测技术应用于深度脑电图记录,以检测和定位时频平面上的某些模式。本文讨论了一种特殊的模式,表示在初始阶段的放电活动。除了本文提出的固定核时频表示检测技术(Auto TFR和Cross TFR)外,还提出了一种基于信号相关的时频表示检测技术,并对结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信