Lexical analyzer based on a self-organizing feature map

G. Menier, G. Lorette
{"title":"Lexical analyzer based on a self-organizing feature map","authors":"G. Menier, G. Lorette","doi":"10.1109/ICDAR.1997.620672","DOIUrl":null,"url":null,"abstract":"In a lexical analyzer, the scanning of a whole dictionary using an editing distance measure has a very high computational cost. We present a lexical analyzer designed to focus on a very limited subset of the whole dictionary. The system is based on a self-organizing feature map which maps the dictionary on to a 2D space. The neighborhood relationships on this space are then used to define a short list of hypotheses. We introduce a multi-stage pyramidal network to speed up the access, and we present the performance of the system. These results are then interpreted.","PeriodicalId":435320,"journal":{"name":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1997.620672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In a lexical analyzer, the scanning of a whole dictionary using an editing distance measure has a very high computational cost. We present a lexical analyzer designed to focus on a very limited subset of the whole dictionary. The system is based on a self-organizing feature map which maps the dictionary on to a 2D space. The neighborhood relationships on this space are then used to define a short list of hypotheses. We introduce a multi-stage pyramidal network to speed up the access, and we present the performance of the system. These results are then interpreted.
基于自组织特征映射的词法分析器
在词法分析器中,使用编辑距离度量对整个字典进行扫描具有非常高的计算成本。我们提出了一个词法分析器,旨在关注整个字典的一个非常有限的子集。该系统基于自组织特征映射,将字典映射到二维空间。然后,这个空间上的邻域关系被用来定义一个简短的假设列表。为了提高访问速度,我们引入了多级金字塔网络,并给出了系统的性能。然后对这些结果进行解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信