On the Identity and Group Problems for Complex Heisenberg Matrices

Paul C. Bell, R. Niskanen, I. Potapov, P. Semukhin
{"title":"On the Identity and Group Problems for Complex Heisenberg Matrices","authors":"Paul C. Bell, R. Niskanen, I. Potapov, P. Semukhin","doi":"10.48550/arXiv.2307.05283","DOIUrl":null,"url":null,"abstract":"We study the Identity Problem, the problem of determining if a finitely generated semigroup of matrices contains the identity matrix; see Problem 3 (Chapter 10.3) in ``Unsolved Problems in Mathematical Systems and Control Theory'' by Blondel and Megretski (2004). This fundamental problem is known to be undecidable for $\\mathbb{Z}^{4 \\times 4}$ and decidable for $\\mathbb{Z}^{2 \\times 2}$. The Identity Problem has been recently shown to be in polynomial time by Dong for the Heisenberg group over complex numbers in any fixed dimension with the use of Lie algebra and the Baker-Campbell-Hausdorff formula. We develop alternative proof techniques for the problem making a step forward towards more general problems such as the Membership Problem. We extend our techniques to show that the fundamental problem of determining if a given set of Heisenberg matrices generates a group, can also be decided in polynomial time.","PeriodicalId":404583,"journal":{"name":"Reachability Problems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reachability Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.05283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Identity Problem, the problem of determining if a finitely generated semigroup of matrices contains the identity matrix; see Problem 3 (Chapter 10.3) in ``Unsolved Problems in Mathematical Systems and Control Theory'' by Blondel and Megretski (2004). This fundamental problem is known to be undecidable for $\mathbb{Z}^{4 \times 4}$ and decidable for $\mathbb{Z}^{2 \times 2}$. The Identity Problem has been recently shown to be in polynomial time by Dong for the Heisenberg group over complex numbers in any fixed dimension with the use of Lie algebra and the Baker-Campbell-Hausdorff formula. We develop alternative proof techniques for the problem making a step forward towards more general problems such as the Membership Problem. We extend our techniques to show that the fundamental problem of determining if a given set of Heisenberg matrices generates a group, can also be decided in polynomial time.
复Heisenberg矩阵的恒等与群问题
研究了单位矩阵问题,即确定有限生成的矩阵半群是否包含单位矩阵的问题;参见Blondel和Megretski(2004)的“数学系统和控制理论中的未解决问题”中的问题3(第10.3章)。已知这个基本问题对于$\mathbb{Z}^{4 \乘以4}$是不可判定的,对于$\mathbb{Z}^{2 \乘以2}$是可判定的。最近Dong用李代数和Baker-Campbell-Hausdorff公式证明了Heisenberg群在任何固定维数上的恒等问题是多项式时间的。我们为这个问题开发了替代的证明技术,向更一般的问题(如隶属问题)迈进了一步。我们扩展了我们的技术,以证明确定一组给定的海森堡矩阵是否生成一个群的基本问题,也可以在多项式时间内确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信