Estimation of cortical multivariate autoregressive models for EEG/MEG using an expectation-maximization algorithm

B. Cheung, B. V. Veen
{"title":"Estimation of cortical multivariate autoregressive models for EEG/MEG using an expectation-maximization algorithm","authors":"B. Cheung, B. V. Veen","doi":"10.1109/ISBI.2008.4541226","DOIUrl":null,"url":null,"abstract":"A new method for estimating multivariate autoregressive (MVAR) models of cortical connectivity from surface EEG or MEG measurements is presented. Conventional approaches to this problem first attempt to solve the inverse problem to estimate cortical signals and then fit an MVAR model to the estimated signals. Our new approach expresses the measured data in tens of a hidden state equation describing MVAR cortical signal evolution and an observation equation that relates the hidden state to the surface measurements. We develop an expectation-maximization (EM) algorithm to find maximum likelihood estimates of the MVAR model parameters. Simulations show that this one-step approach performs significantly better than the conventional two-step approach at estimating the cortical signals and detecting functional connectivity between different cortical regions.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A new method for estimating multivariate autoregressive (MVAR) models of cortical connectivity from surface EEG or MEG measurements is presented. Conventional approaches to this problem first attempt to solve the inverse problem to estimate cortical signals and then fit an MVAR model to the estimated signals. Our new approach expresses the measured data in tens of a hidden state equation describing MVAR cortical signal evolution and an observation equation that relates the hidden state to the surface measurements. We develop an expectation-maximization (EM) algorithm to find maximum likelihood estimates of the MVAR model parameters. Simulations show that this one-step approach performs significantly better than the conventional two-step approach at estimating the cortical signals and detecting functional connectivity between different cortical regions.
基于期望最大化算法的脑电/脑磁图皮质多元自回归模型估计
提出了一种基于表面脑电或脑磁图的多变量自回归(MVAR)模型估计方法。传统的方法首先试图解决反问题来估计皮层信号,然后对估计的信号拟合MVAR模型。我们的新方法用一个描述MVAR皮层信号演变的隐藏状态方程和一个将隐藏状态与表面测量联系起来的观察方程来表达测量数据。我们开发了一种期望最大化(EM)算法来寻找MVAR模型参数的最大似然估计。仿真结果表明,该方法在估计皮质信号和检测不同皮质区域之间的功能连通性方面明显优于传统的两步方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信