A research on combination methods for ensembles of multilayer feedforward

J. Torres-Sospedra, M. Fernández-Redondo, C. Hernández-Espinosa
{"title":"A research on combination methods for ensembles of multilayer feedforward","authors":"J. Torres-Sospedra, M. Fernández-Redondo, C. Hernández-Espinosa","doi":"10.1109/IJCNN.2005.1556011","DOIUrl":null,"url":null,"abstract":"As shown in the bibliography, training an ensemble of networks is an interesting way to improve the performance with respect to a single network. The two key factors to design an ensemble are how to train the individual networks and how to combine the different outputs of the networks to give a single output class. In this paper, we focus on the combination methods. We study the performance of fourteen different combination methods for ensembles of the type \"simple ensemble\" and \"decorrelated\". In the case of the \"simple ensemble\" and low number of networks in the ensemble, the method Zimmermann gets the best performance. When the number of networks is in the range of 9 and 20 the weighted average is the best alternative. Finally, in the case of the ensemble \"decorrelated\" the best performing method is averaging over a wide spectrum of the number of networks in the ensemble.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"4695 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

As shown in the bibliography, training an ensemble of networks is an interesting way to improve the performance with respect to a single network. The two key factors to design an ensemble are how to train the individual networks and how to combine the different outputs of the networks to give a single output class. In this paper, we focus on the combination methods. We study the performance of fourteen different combination methods for ensembles of the type "simple ensemble" and "decorrelated". In the case of the "simple ensemble" and low number of networks in the ensemble, the method Zimmermann gets the best performance. When the number of networks is in the range of 9 and 20 the weighted average is the best alternative. Finally, in the case of the ensemble "decorrelated" the best performing method is averaging over a wide spectrum of the number of networks in the ensemble.
多层前馈系统集成组合方法研究
如参考书目所示,训练网络集合是相对于单个网络提高性能的一种有趣的方法。设计集成的两个关键因素是如何训练单个网络以及如何组合网络的不同输出以给出单个输出类。在本文中,我们重点研究了组合方法。研究了“简单集成”和“去相关”类型集成的14种不同组合方法的性能。在“简单集成”和集成中网络数量较少的情况下,Zimmermann方法的性能最好。当网络数量在9到20的范围内时,加权平均是最佳选择。最后,在集成“去相关”的情况下,表现最好的方法是对集成中网络数量的广泛频谱进行平均。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信