Determining the Structure of Decision Directed Acyclic Graphs for Multiclass Classification Problems

Thaise M. Quiterio, Ana Carolina Lorena
{"title":"Determining the Structure of Decision Directed Acyclic Graphs for Multiclass Classification Problems","authors":"Thaise M. Quiterio, Ana Carolina Lorena","doi":"10.1109/BRACIS.2016.031","DOIUrl":null,"url":null,"abstract":"An usual strategy to solve multiclass classification problems in Machine Learning is to decompose them into multiple binary sub-problems. The final multiclass prediction is obtained by a proper combination of the outputs of the binary classifiers induced in their solution. Decision directed acyclic graphs (DDAG) can be used to organize and to aggregate the outputs of the pairwise classifiers from the one-versus-one (OVO) decomposition. Nonetheless, there are various possible DDAG structures for problems with many classes. In this paper evolutionary algorithms are employed to heuristically find the positions of the OVO binary classifiers in a DDAG. The objective is to place easier sub-problems at higher levels of the DDAG hierarchical structure, in order to minimize the occurrence of cumulative errors. For estimating the complexity of the binary sub-problems, we employ two indexes which measure the separability of the classes. The proposed approach presented sound results in a set of experiments on benchmark datasets, although random DDAGs also performed quite well.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An usual strategy to solve multiclass classification problems in Machine Learning is to decompose them into multiple binary sub-problems. The final multiclass prediction is obtained by a proper combination of the outputs of the binary classifiers induced in their solution. Decision directed acyclic graphs (DDAG) can be used to organize and to aggregate the outputs of the pairwise classifiers from the one-versus-one (OVO) decomposition. Nonetheless, there are various possible DDAG structures for problems with many classes. In this paper evolutionary algorithms are employed to heuristically find the positions of the OVO binary classifiers in a DDAG. The objective is to place easier sub-problems at higher levels of the DDAG hierarchical structure, in order to minimize the occurrence of cumulative errors. For estimating the complexity of the binary sub-problems, we employ two indexes which measure the separability of the classes. The proposed approach presented sound results in a set of experiments on benchmark datasets, although random DDAGs also performed quite well.
多类分类问题中决策有向无环图结构的确定
机器学习中解决多类分类问题的常用策略是将其分解为多个二值子问题。最终的多类预测是通过适当组合在其解中诱导的二元分类器的输出来获得的。决策有向无环图(DDAG)可用于组织和聚合来自一对一(OVO)分解的成对分类器的输出。尽管如此,对于许多类的问题,存在各种可能的DDAG结构。本文采用进化算法启发式地寻找OVO二元分类器在DDAG中的位置。目标是将更容易的子问题放在DDAG层次结构的更高层次上,以便最大限度地减少累积错误的发生。为了估计二元子问题的复杂性,我们使用了两个度量类的可分性的指标。该方法在基准数据集上的一组实验中给出了良好的结果,尽管随机DDAGs也表现得相当好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信