Optimal Rank and Select Queries on Dictionary-Compressed Text

N. Prezza
{"title":"Optimal Rank and Select Queries on Dictionary-Compressed Text","authors":"N. Prezza","doi":"10.4230/LIPIcs.CPM.2019.4","DOIUrl":null,"url":null,"abstract":"We study the problem of supporting queries on a string $S$ of length $n$ within a space bounded by the size $\\gamma$ of a string attractor for $S$. Recent works showed that random access on $S$ can be supported in optimal $O(\\log(n/\\gamma)/\\log\\log n)$ time within $O\\left (\\gamma\\ \\rm{polylog}\\ n \\right)$ space. In this paper, we extend this result to \\emph{rank} and \\emph{select} queries and provide lower bounds matching our upper bounds on alphabets of polylogarithmic size. Our solutions are given in the form of a space-time trade-off that is more general than the one previously known for grammars and that improves existing bounds on LZ77-compressed text by a $\\log\\log n$ time-factor in \\emph{select} queries. We also provide matching lower and upper bounds for \\emph{partial sum} and \\emph{predecessor} queries within attractor-bounded space, and extend our lower bounds to encompass navigation of dictionary-compressed tree representations.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2019.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We study the problem of supporting queries on a string $S$ of length $n$ within a space bounded by the size $\gamma$ of a string attractor for $S$. Recent works showed that random access on $S$ can be supported in optimal $O(\log(n/\gamma)/\log\log n)$ time within $O\left (\gamma\ \rm{polylog}\ n \right)$ space. In this paper, we extend this result to \emph{rank} and \emph{select} queries and provide lower bounds matching our upper bounds on alphabets of polylogarithmic size. Our solutions are given in the form of a space-time trade-off that is more general than the one previously known for grammars and that improves existing bounds on LZ77-compressed text by a $\log\log n$ time-factor in \emph{select} queries. We also provide matching lower and upper bounds for \emph{partial sum} and \emph{predecessor} queries within attractor-bounded space, and extend our lower bounds to encompass navigation of dictionary-compressed tree representations.
字典压缩文本的最优排序和选择查询
我们研究了在以$S$的字符串吸引子的大小$\gamma$为界的空间内支持对长度为$n$的字符串$S$的查询的问题。最近的研究表明,在$O\left (\gamma\ \rm{polylog}\ n \right)$空间的最优$O(\log(n/\gamma)/\log\log n)$时间内,可以支持对$S$的随机访问。在本文中,我们将这个结果扩展到\emph{排序}和\emph{选择}查询,并提供与多对数大小的字母的上界匹配的下界。我们的解决方案以时空折衷的形式给出,这种折衷比以前已知的语法折衷更通用,并且通过在\emph{选择}查询中增加$\log\log n$时间因子来改进lz77压缩文本的现有边界。我们还为吸引子有界空间中的\emph{部分}和和\emph{前导}查询提供了匹配的下界和上界,并扩展了下界以包含字典压缩树表示的导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信