{"title":"A Dockers Storage Performance Evaluation: Impact of Backing File Systems","authors":"A. Ramadan","doi":"10.54216/jisiot.030101","DOIUrl":null,"url":null,"abstract":"This paper reports on an in-depth examination of the impact of the backing filesystems to Docker performance in the context of Linux container-based virtualization. The experimental design was a 3x3x4 arrangement, i.e., we considered three different numbers of Docker containers, three filesystems (Ext4, XFS and Btrfs), and four application workloads related to Web server I/O activity, e-mail server I/O activity, file server I/O activity and random file access I/O activity, respectively. The experimental results indicate that Ext4 is the most optimal filesystem, among the considered filesystems, for the considered experimental settings. In addition, the XFS filesystem is not suitable for workloads that are dominated by synchronous random write components (e.g., characteristical for mail workload), while the Btrfs filesystem is not suitable for workloads dominated by random write and sequential write components (e.g., file server workload).","PeriodicalId":122556,"journal":{"name":"Journal of Intelligent Systems and Internet of Things","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jisiot.030101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper reports on an in-depth examination of the impact of the backing filesystems to Docker performance in the context of Linux container-based virtualization. The experimental design was a 3x3x4 arrangement, i.e., we considered three different numbers of Docker containers, three filesystems (Ext4, XFS and Btrfs), and four application workloads related to Web server I/O activity, e-mail server I/O activity, file server I/O activity and random file access I/O activity, respectively. The experimental results indicate that Ext4 is the most optimal filesystem, among the considered filesystems, for the considered experimental settings. In addition, the XFS filesystem is not suitable for workloads that are dominated by synchronous random write components (e.g., characteristical for mail workload), while the Btrfs filesystem is not suitable for workloads dominated by random write and sequential write components (e.g., file server workload).