CHILD: A robust Computationally-Efficient Histogram-based Image Local Descriptor

Sai Hareesh Anamandra, V. Chandrasekaran
{"title":"CHILD: A robust Computationally-Efficient Histogram-based Image Local Descriptor","authors":"Sai Hareesh Anamandra, V. Chandrasekaran","doi":"10.1109/NCVPRIPG.2013.6776154","DOIUrl":null,"url":null,"abstract":"Designing a robust image local descriptor for the purpose of pattern recognition and classification has been an active area of research. Towards this end, a number of local descriptors based on Weber's law have been proposed recently. Notable among them are Weber Local Descriptor (WLD), Weber Local Binary Pattern (WLBP) and Gabor Weber Local Descriptor (GWLD). Experiments reveal their inability to classify patterns under noisy environments. Our analysis indicates that the components of the WLD: differential excitation and orientation are to be redesigned for robustness and computational efficiency.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Designing a robust image local descriptor for the purpose of pattern recognition and classification has been an active area of research. Towards this end, a number of local descriptors based on Weber's law have been proposed recently. Notable among them are Weber Local Descriptor (WLD), Weber Local Binary Pattern (WLBP) and Gabor Weber Local Descriptor (GWLD). Experiments reveal their inability to classify patterns under noisy environments. Our analysis indicates that the components of the WLD: differential excitation and orientation are to be redesigned for robustness and computational efficiency.
CHILD:基于直方图的鲁棒高效图像局部描述符
设计鲁棒的图像局部描述符用于模式识别和分类一直是一个活跃的研究领域。为此,最近提出了一些基于韦伯定律的局部描述符。其中比较著名的有Weber局部描述子(WLD)、Weber局部二元模式(WLBP)和Gabor Weber局部描述子(GWLD)。实验表明,在嘈杂的环境下,它们无法对图案进行分类。我们的分析表明,为了鲁棒性和计算效率,需要重新设计WLD的组成部分:微分激励和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信