Convolutional Neural Network Based Fault Detection for Transmission Line

A. Bhuyan, B. Panigrahi, Kumaresh Pal, Subhendu Pati
{"title":"Convolutional Neural Network Based Fault Detection for Transmission Line","authors":"A. Bhuyan, B. Panigrahi, Kumaresh Pal, Subhendu Pati","doi":"10.1109/ICICCSP53532.2022.9862446","DOIUrl":null,"url":null,"abstract":"Faults are becoming more common as the number of transmission lines grows progressively. The detection of faults must be quick and precise to do the least amount of harm to the power system. Convolutional Neural Networks (CNN) is one of the finest options for detecting faults in transmission lines. This paper presents a novel fault detection method based on Convolutional Neural Networks in which the current vs. time graph of all faults is used as input for the image classifier. For the input an image data has been generated with appropriate target values and given to the model. The model is trained and tested after it is created. The testing results reveal that the convolutional neural network performs well for all types of faults.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Faults are becoming more common as the number of transmission lines grows progressively. The detection of faults must be quick and precise to do the least amount of harm to the power system. Convolutional Neural Networks (CNN) is one of the finest options for detecting faults in transmission lines. This paper presents a novel fault detection method based on Convolutional Neural Networks in which the current vs. time graph of all faults is used as input for the image classifier. For the input an image data has been generated with appropriate target values and given to the model. The model is trained and tested after it is created. The testing results reveal that the convolutional neural network performs well for all types of faults.
基于卷积神经网络的输电线路故障检测
随着输电线路数量的不断增加,故障变得越来越普遍。故障的检测必须快速准确,以使对电力系统的危害降到最低。卷积神经网络(CNN)是输电线路故障检测的最佳选择之一。本文提出了一种基于卷积神经网络的故障检测方法,该方法将所有故障的电流与时间图作为图像分类器的输入。对于输入,已生成具有适当目标值的图像数据并将其提供给模型。模型在创建后进行训练和测试。测试结果表明,卷积神经网络对各种类型的故障都有较好的处理效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信