{"title":"2.8 A broadband CMOS digital power amplifier with hybrid Class-G Doherty efficiency enhancement","authors":"Song Hu, S. Kousai, Hua Wang","doi":"10.1109/ISSCC.2015.7062917","DOIUrl":null,"url":null,"abstract":"Spectrum-efficient modulations in modern wireless systems often result in large peak-to-average power ratios (PAPRs) for the transmitted signals. Therefore, PA efficiency at deep power back-off (PBO) levels (e.g., -12dB) becomes critical to extend the mobile's battery life. Classic techniques, i.e., outphasing, envelope tracking, and Doherty PAs, offer marginal efficiency improvement at deep PBO in practice. Dual-mode PAs require switches at the PA output for high-/low-power mode selection [1,2], posing reliability and linearity challenges. Although simple supply switching (Class-G) is effective at deep PBO, it only offers Class-B-like PBO efficiency in each supply mode [3,4]. Multi-level outphasing PA requires multiple supplies and frequent supply switching [5], resulting in substantial DC-DC converter overhead and exacerbated switching noise.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7062917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Spectrum-efficient modulations in modern wireless systems often result in large peak-to-average power ratios (PAPRs) for the transmitted signals. Therefore, PA efficiency at deep power back-off (PBO) levels (e.g., -12dB) becomes critical to extend the mobile's battery life. Classic techniques, i.e., outphasing, envelope tracking, and Doherty PAs, offer marginal efficiency improvement at deep PBO in practice. Dual-mode PAs require switches at the PA output for high-/low-power mode selection [1,2], posing reliability and linearity challenges. Although simple supply switching (Class-G) is effective at deep PBO, it only offers Class-B-like PBO efficiency in each supply mode [3,4]. Multi-level outphasing PA requires multiple supplies and frequent supply switching [5], resulting in substantial DC-DC converter overhead and exacerbated switching noise.