Asymptotic shape of the concave majorant of a Lévy process

D. Bang, Jorge Ignacio Gonz'alez C'azares, Aleksandar Mijatovi'c
{"title":"Asymptotic shape of the concave majorant of a Lévy process","authors":"D. Bang, Jorge Ignacio Gonz'alez C'azares, Aleksandar Mijatovi'c","doi":"10.5802/ahl.136","DOIUrl":null,"url":null,"abstract":". — We establish distributional limit theorems for the shape statistics of a concave majorant (i.e. the fluctuations of its length, its supremum, the time it is attained and its value at T ) of a Lévy process on [0 , T ] as T → ∞ . The scale of the fluctuations of the length and other statistics, as well as their asymptotic dependence, vary significantly with the tail behaviour of the Lévy measure. The key tool in the proofs is the recent representation of the concave majorant for all Lévy processes using a stick-breaking representation. Résumé. — Nous établissons des théorèmes distributionnels limites pour les statistiques de la forme d’un majorant concave (i.e. les fluctuations de sa longueur, son supremum, son temps d’atteinte et sa valeur en T ) d’un processus de Lévy sur [0 , T ] lorsque T → ∞ . L’ampleur des","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

. — We establish distributional limit theorems for the shape statistics of a concave majorant (i.e. the fluctuations of its length, its supremum, the time it is attained and its value at T ) of a Lévy process on [0 , T ] as T → ∞ . The scale of the fluctuations of the length and other statistics, as well as their asymptotic dependence, vary significantly with the tail behaviour of the Lévy measure. The key tool in the proofs is the recent representation of the concave majorant for all Lévy processes using a stick-breaking representation. Résumé. — Nous établissons des théorèmes distributionnels limites pour les statistiques de la forme d’un majorant concave (i.e. les fluctuations de sa longueur, son supremum, son temps d’atteinte et sa valeur en T ) d’un processus de Lévy sur [0 , T ] lorsque T → ∞ . L’ampleur des
一个lsamvy过程的凹形的渐近形状
. 在[0,T]上,我们建立了lsamvy过程在T→∞上的凹形统计量的分布极限定理(即它的长度、它的最大值、它达到的时间和它在T处的值的波动)。长度和其他统计量的波动幅度及其渐近依赖性随着lsamvy测量的尾部行为而显著变化。在证明的关键工具是凹主要的最近表示所有的lsamvy过程使用棍断表示。的简历。-不确定的统计数据,即不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动。L 'ampleur des
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信