D. Bang, Jorge Ignacio Gonz'alez C'azares, Aleksandar Mijatovi'c
{"title":"Asymptotic shape of the concave majorant of a Lévy process","authors":"D. Bang, Jorge Ignacio Gonz'alez C'azares, Aleksandar Mijatovi'c","doi":"10.5802/ahl.136","DOIUrl":null,"url":null,"abstract":". — We establish distributional limit theorems for the shape statistics of a concave majorant (i.e. the fluctuations of its length, its supremum, the time it is attained and its value at T ) of a Lévy process on [0 , T ] as T → ∞ . The scale of the fluctuations of the length and other statistics, as well as their asymptotic dependence, vary significantly with the tail behaviour of the Lévy measure. The key tool in the proofs is the recent representation of the concave majorant for all Lévy processes using a stick-breaking representation. Résumé. — Nous établissons des théorèmes distributionnels limites pour les statistiques de la forme d’un majorant concave (i.e. les fluctuations de sa longueur, son supremum, son temps d’atteinte et sa valeur en T ) d’un processus de Lévy sur [0 , T ] lorsque T → ∞ . L’ampleur des","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
. — We establish distributional limit theorems for the shape statistics of a concave majorant (i.e. the fluctuations of its length, its supremum, the time it is attained and its value at T ) of a Lévy process on [0 , T ] as T → ∞ . The scale of the fluctuations of the length and other statistics, as well as their asymptotic dependence, vary significantly with the tail behaviour of the Lévy measure. The key tool in the proofs is the recent representation of the concave majorant for all Lévy processes using a stick-breaking representation. Résumé. — Nous établissons des théorèmes distributionnels limites pour les statistiques de la forme d’un majorant concave (i.e. les fluctuations de sa longueur, son supremum, son temps d’atteinte et sa valeur en T ) d’un processus de Lévy sur [0 , T ] lorsque T → ∞ . L’ampleur des
. 在[0,T]上,我们建立了lsamvy过程在T→∞上的凹形统计量的分布极限定理(即它的长度、它的最大值、它达到的时间和它在T处的值的波动)。长度和其他统计量的波动幅度及其渐近依赖性随着lsamvy测量的尾部行为而显著变化。在证明的关键工具是凹主要的最近表示所有的lsamvy过程使用棍断表示。的简历。-不确定的统计数据,即不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动,不确定的波动。L 'ampleur des