Are These Birds Similar: Learning Branched Networks for Fine-grained Representations

Shah Nawaz, Alessandro Calefati, Moreno Caraffini, Nicola Landro, I. Gallo
{"title":"Are These Birds Similar: Learning Branched Networks for Fine-grained Representations","authors":"Shah Nawaz, Alessandro Calefati, Moreno Caraffini, Nicola Landro, I. Gallo","doi":"10.1109/IVCNZ48456.2019.8960960","DOIUrl":null,"url":null,"abstract":"Fine-grained image classification is a challenging task due to the presence of hierarchical coarse-to-fine-grained distribution in the dataset. Generally, parts are used to discriminate various objects in fine-grained datasets, however, not all parts are beneficial and indispensable. In recent years, natural language descriptions are used to obtain information on discriminative parts of the object. This paper leverages on natural language description and proposes a strategy for learning the joint representation of natural language description and images using a two-branch network with multiple layers to improve the fine-grained classification task. Extensive experiments show that our approach gains significant improvements in accuracy for the fine-grained image classification task. Furthermore, our method achieves new state-of-the-art results on the CUB-200-2011 dataset.","PeriodicalId":217359,"journal":{"name":"2019 International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ48456.2019.8960960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Fine-grained image classification is a challenging task due to the presence of hierarchical coarse-to-fine-grained distribution in the dataset. Generally, parts are used to discriminate various objects in fine-grained datasets, however, not all parts are beneficial and indispensable. In recent years, natural language descriptions are used to obtain information on discriminative parts of the object. This paper leverages on natural language description and proposes a strategy for learning the joint representation of natural language description and images using a two-branch network with multiple layers to improve the fine-grained classification task. Extensive experiments show that our approach gains significant improvements in accuracy for the fine-grained image classification task. Furthermore, our method achieves new state-of-the-art results on the CUB-200-2011 dataset.
这些鸟类相似吗?学习细粒度表征的分支网络
由于数据集中存在从粗粒度到细粒度的分层分布,因此细粒度图像分类是一项具有挑战性的任务。一般来说,在细粒度数据集中,部件被用来区分各种物体,然而,并非所有部件都是有益和不可或缺的。近年来,自然语言描述被用来获取对象中具有区分性的部分的信息。本文利用自然语言描述,提出了一种利用多层双分支网络学习自然语言描述和图像联合表示的策略,以改进细粒度分类任务。大量实验表明,我们的方法显著提高了细粒度图像分类任务的准确性。此外,我们的方法在 CUB-200-2011 数据集上取得了新的一流结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信