Robust distributed speech recognition using two-stage Filtered Minima Controlled Recursive Averaging

Negar Ghourchian, S. Selouani, D. O'Shaughnessy
{"title":"Robust distributed speech recognition using two-stage Filtered Minima Controlled Recursive Averaging","authors":"Negar Ghourchian, S. Selouani, D. O'Shaughnessy","doi":"10.1109/ASRU.2009.5372925","DOIUrl":null,"url":null,"abstract":"This paper examines the use of a new Filtered Minima-Controlled Recursive Averaging (FMCRA) noise estimation technique as a robust front-end processing to improve the performance of a Distributed Speech Recognition (DSR) system in noisy environments. The noisy speech is enhanced by using a two-stage framework in order to simultaneously address the inefficiency of the Voice Activity Detector (VAD) and to remedy the inadequacies of MCRA. The performance evaluation carried out on the Aurora 2 task showed that the inclusion of FMCRA in the front-end side leads to a significant improvement in DSR accuracy.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5372925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper examines the use of a new Filtered Minima-Controlled Recursive Averaging (FMCRA) noise estimation technique as a robust front-end processing to improve the performance of a Distributed Speech Recognition (DSR) system in noisy environments. The noisy speech is enhanced by using a two-stage framework in order to simultaneously address the inefficiency of the Voice Activity Detector (VAD) and to remedy the inadequacies of MCRA. The performance evaluation carried out on the Aurora 2 task showed that the inclusion of FMCRA in the front-end side leads to a significant improvement in DSR accuracy.
基于两阶段滤波最小控制递归平均的鲁棒分布式语音识别
本文研究了一种新的滤波最小控制递归平均(FMCRA)噪声估计技术作为鲁棒前端处理的使用,以提高分布式语音识别(DSR)系统在噪声环境中的性能。为了同时解决语音活动检测器(VAD)的低效率问题和弥补MCRA的不足,采用两阶段框架对噪声语音进行增强。对极光2号任务进行的性能评估表明,在前端加入FMCRA可以显著提高DSR精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信