Michael Werner, Keerthikumara Devarajegowda, M. Chaari, W. Ecker
{"title":"Increasing Soft Error Resilience by Software Transformation","authors":"Michael Werner, Keerthikumara Devarajegowda, M. Chaari, W. Ecker","doi":"10.1145/3316781.3323479","DOIUrl":null,"url":null,"abstract":"Developing software in a slightly different way can have a dramatic impact on soft error resilience. This observation can be transferred in a process of improving existing code by transformations. These transformations are of systematic nature and can be automated. In this paper, we present a framework for low level embedded software generation - commonly referred to as firmware -- and the inclusion of safety measures in the generated code. The generation approach follows a three stage process starting with formalized firmware specification using both platform dependent and independent firmware models. Finally, C-code is generated from the view model in a straight forward way. Safety measures are included either as part of the translation step between the models or as transformations of single models.","PeriodicalId":391209,"journal":{"name":"Proceedings of the 56th Annual Design Automation Conference 2019","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 56th Annual Design Automation Conference 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316781.3323479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Developing software in a slightly different way can have a dramatic impact on soft error resilience. This observation can be transferred in a process of improving existing code by transformations. These transformations are of systematic nature and can be automated. In this paper, we present a framework for low level embedded software generation - commonly referred to as firmware -- and the inclusion of safety measures in the generated code. The generation approach follows a three stage process starting with formalized firmware specification using both platform dependent and independent firmware models. Finally, C-code is generated from the view model in a straight forward way. Safety measures are included either as part of the translation step between the models or as transformations of single models.