K-mean clustering based cooperative spectrum sensing in generalized к-μ fading channels

Vaibhav Kumar, Deepika Kandpal, Monika Jain, R. Gangopadhyay, Soumitra Debnath
{"title":"K-mean clustering based cooperative spectrum sensing in generalized к-μ fading channels","authors":"Vaibhav Kumar, Deepika Kandpal, Monika Jain, R. Gangopadhyay, Soumitra Debnath","doi":"10.1109/NCC.2016.7561130","DOIUrl":null,"url":null,"abstract":"Machine learning based approaches for spectrum sensing and spectrum occupancy prediction in cognitive radio applications appear to have attracted sufficient interest in the current literature. In this paper, K-mean clustering based unsupervised learning method has been adopted for the performance enhancement of cooperative spectrum sensing in generalized κ-μ fading channels. Extensive simulation has been carried out for different system parameter trade-off in characterizing the receiver operating characteristics.","PeriodicalId":279637,"journal":{"name":"2016 Twenty Second National Conference on Communication (NCC)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Twenty Second National Conference on Communication (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2016.7561130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Machine learning based approaches for spectrum sensing and spectrum occupancy prediction in cognitive radio applications appear to have attracted sufficient interest in the current literature. In this paper, K-mean clustering based unsupervised learning method has been adopted for the performance enhancement of cooperative spectrum sensing in generalized κ-μ fading channels. Extensive simulation has been carried out for different system parameter trade-off in characterizing the receiver operating characteristics.
基于k均值聚类的广义衰落信道协同频谱感知
基于机器学习的频谱感知和频谱占用预测方法在认知无线电应用中似乎已经引起了当前文献的足够兴趣。本文采用基于k均值聚类的无监督学习方法增强广义κ-μ衰落信道下的协同频谱感知性能。在描述接收机工作特性时,对不同系统参数的权衡进行了大量的仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信