Spectral Ranking Regression

Ilkay Yildiz, Jennifer G. Dy, D. Erdoğmuş, S. Ostmo, J. Campbell, Michael F. Chiang, Stratis Ioannidis
{"title":"Spectral Ranking Regression","authors":"Ilkay Yildiz, Jennifer G. Dy, D. Erdoğmuş, S. Ostmo, J. Campbell, Michael F. Chiang, Stratis Ioannidis","doi":"10.1145/3530693","DOIUrl":null,"url":null,"abstract":"We study the problem of ranking regression, in which a dataset of rankings is used to learn Plackett–Luce scores as functions of sample features. We propose a novel spectral algorithm to accelerate learning in ranking regression. Our main technical contribution is to show that the Plackett–Luce negative log-likelihood augmented with a proximal penalty has stationary points that satisfy the balance equations of a Markov Chain. This allows us to tackle the ranking regression problem via an efficient spectral algorithm by using the Alternating Directions Method of Multipliers (ADMM). ADMM separates the learning of scores and model parameters, and in turn, enables us to devise fast spectral algorithms for ranking regression via both shallow and deep neural network (DNN) models. For shallow models, our algorithms are up to 579 times faster than the Newton’s method. For DNN models, we extend the standard ADMM via a Kullback–Leibler proximal penalty and show that this is still amenable to fast inference via a spectral approach. Compared to a state-of-the-art siamese network, our resulting algorithms are up to 175 times faster and attain better predictions by up to 26% Top-1 Accuracy and 6% Kendall-Tau correlation over five real-life ranking datasets.","PeriodicalId":435653,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data (TKDD)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data (TKDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3530693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of ranking regression, in which a dataset of rankings is used to learn Plackett–Luce scores as functions of sample features. We propose a novel spectral algorithm to accelerate learning in ranking regression. Our main technical contribution is to show that the Plackett–Luce negative log-likelihood augmented with a proximal penalty has stationary points that satisfy the balance equations of a Markov Chain. This allows us to tackle the ranking regression problem via an efficient spectral algorithm by using the Alternating Directions Method of Multipliers (ADMM). ADMM separates the learning of scores and model parameters, and in turn, enables us to devise fast spectral algorithms for ranking regression via both shallow and deep neural network (DNN) models. For shallow models, our algorithms are up to 579 times faster than the Newton’s method. For DNN models, we extend the standard ADMM via a Kullback–Leibler proximal penalty and show that this is still amenable to fast inference via a spectral approach. Compared to a state-of-the-art siamese network, our resulting algorithms are up to 175 times faster and attain better predictions by up to 26% Top-1 Accuracy and 6% Kendall-Tau correlation over five real-life ranking datasets.
光谱排序回归
我们研究了排名回归问题,其中使用排名数据集来学习Plackett-Luce分数作为样本特征的函数。我们提出了一种新的谱算法来加速排序回归的学习。我们的主要技术贡献是证明了带有近端惩罚的Plackett-Luce负对数似然增广具有满足马尔可夫链平衡方程的平稳点。这使我们能够通过使用乘数交替方向法(ADMM)的有效谱算法来解决排序回归问题。ADMM分离了分数和模型参数的学习,反过来,使我们能够通过浅层和深层神经网络(DNN)模型设计快速的光谱算法来排序回归。对于浅模型,我们的算法比牛顿方法快579倍。对于DNN模型,我们通过Kullback-Leibler近端惩罚扩展了标准ADMM,并表明这仍然适用于通过谱方法进行快速推理。与最先进的暹罗网络相比,我们的结果算法速度快175倍,并且在五个现实生活排名数据集上获得了高达26%的Top-1准确率和6%的Kendall-Tau相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信