Modeling, parameterization, and state of charge estimation of Li-Ion cells using a circuit model

Hamed H. Afshari, M. Attari, R. Ahmed, M. Farag, S. Habibi
{"title":"Modeling, parameterization, and state of charge estimation of Li-Ion cells using a circuit model","authors":"Hamed H. Afshari, M. Attari, R. Ahmed, M. Farag, S. Habibi","doi":"10.1109/ITEC.2016.7520301","DOIUrl":null,"url":null,"abstract":"This paper presents a general procedure applied for modeling, parameter identification, and state of charge (SOC) estimation of a Li-Ion battery cell. The paper explains a battery tester with a number of experiments conducted to investigate the cell physical properties. Dynamics of the Li-Ion cell are modeled using an equivalent circuit model, whereas parameters of the model are calculated using particle swarm optimization. This method minimizes the output error that is the difference between the simulated output from the model and the measured terminal voltage. The provided equivalent circuit model with optimized parameters was used for SOC estimation. Two different state estimation methods have been applied to estimate the cell SOC based on real-time measurements. The estimation methods include the extended Kalman filter (EKF), and the novel smooth variable structure filter (SVSF). The SVSF method was used as it can produce more accurate state estimates for dynamic systems with modeling and parametric uncertainties. This paper compares the performance of these two estimators for real-time SOC estimation using tester data.","PeriodicalId":280676,"journal":{"name":"2016 IEEE Transportation Electrification Conference and Expo (ITEC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Transportation Electrification Conference and Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC.2016.7520301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents a general procedure applied for modeling, parameter identification, and state of charge (SOC) estimation of a Li-Ion battery cell. The paper explains a battery tester with a number of experiments conducted to investigate the cell physical properties. Dynamics of the Li-Ion cell are modeled using an equivalent circuit model, whereas parameters of the model are calculated using particle swarm optimization. This method minimizes the output error that is the difference between the simulated output from the model and the measured terminal voltage. The provided equivalent circuit model with optimized parameters was used for SOC estimation. Two different state estimation methods have been applied to estimate the cell SOC based on real-time measurements. The estimation methods include the extended Kalman filter (EKF), and the novel smooth variable structure filter (SVSF). The SVSF method was used as it can produce more accurate state estimates for dynamic systems with modeling and parametric uncertainties. This paper compares the performance of these two estimators for real-time SOC estimation using tester data.
使用电路模型的锂离子电池的建模、参数化和充电状态估计
本文介绍了锂离子电池的建模、参数识别和荷电状态(SOC)估计的一般程序。本文介绍了一种电池测试仪,并进行了一系列实验来研究电池的物理特性。采用等效电路模型对锂离子电池进行了动力学建模,并采用粒子群优化方法对模型参数进行了计算。这种方法最大限度地减少输出误差,即模型模拟输出与测量端子电压之间的差异。利用所提供的等效电路模型和优化后的参数进行SOC估计。采用两种不同的状态估计方法对电池荷电状态进行实时测量。估计方法包括扩展卡尔曼滤波(EKF)和新型光滑变结构滤波(SVSF)。对于具有建模和参数不确定性的动态系统,采用支持向量机方法可以得到更精确的状态估计。本文利用测试数据比较了这两种估计器在实时SOC估计中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信