Discovering and Exploiting Deterministic Label Relationships in Multi-Label Learning

C. Papagiannopoulou, Grigorios Tsoumakas, I. Tsamardinos
{"title":"Discovering and Exploiting Deterministic Label Relationships in Multi-Label Learning","authors":"C. Papagiannopoulou, Grigorios Tsoumakas, I. Tsamardinos","doi":"10.1145/2783258.2783302","DOIUrl":null,"url":null,"abstract":"This work presents a probabilistic method for enforcing adherence of the marginal probabilities of a multi-label model to automatically discovered deterministic relationships among labels. In particular we focus on discovering two kinds of relationships among the labels. The first one concerns pairwise positive entailment: pairs of labels, where the presence of one implies the presence of the other in all instances of a dataset. The second concerns exclusion: sets of labels that do not coexist in the same instances of the dataset. These relationships are represented as a deterministic Bayesian network. Marginal probabilities are entered as soft evidence in the network and through probabilistic inference become consistent with the discovered knowledge. Our approach offers robust improvements in mean average precision compared to the standard binary relevance approach across all 12 datasets involved in our experiments. The discovery process helps interesting implicit knowledge to emerge, which could be useful in itself.","PeriodicalId":243428,"journal":{"name":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2783258.2783302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This work presents a probabilistic method for enforcing adherence of the marginal probabilities of a multi-label model to automatically discovered deterministic relationships among labels. In particular we focus on discovering two kinds of relationships among the labels. The first one concerns pairwise positive entailment: pairs of labels, where the presence of one implies the presence of the other in all instances of a dataset. The second concerns exclusion: sets of labels that do not coexist in the same instances of the dataset. These relationships are represented as a deterministic Bayesian network. Marginal probabilities are entered as soft evidence in the network and through probabilistic inference become consistent with the discovered knowledge. Our approach offers robust improvements in mean average precision compared to the standard binary relevance approach across all 12 datasets involved in our experiments. The discovery process helps interesting implicit knowledge to emerge, which could be useful in itself.
发现和利用多标签学习中的确定性标签关系
这项工作提出了一种概率方法,用于强制遵守多标签模型的边际概率,以自动发现标签之间的确定性关系。我们特别关注于发现标签之间的两种关系。第一个涉及成对正蕴意:标签对,其中一个的存在意味着在数据集的所有实例中存在另一个。第二种是排除:在数据集的相同实例中不共存的标签集。这些关系被表示为确定性贝叶斯网络。边际概率作为软证据输入到网络中,并通过概率推理与发现的知识保持一致。与我们实验中涉及的所有12个数据集的标准二进制相关方法相比,我们的方法在平均平均精度方面提供了强大的改进。发现的过程有助于有趣的隐性知识的出现,这本身可能是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信