{"title":"Characteristics of phase-shifted fiber Bragg grating inscribed by fusion splicing technique and femtosecond laser","authors":"Yajun Jiang, Jian Xu, Yuan Yuan, Dexing Yang, Dong Li, Meirong Wang, Jianlin Zhao","doi":"10.5220/0005738503560360","DOIUrl":null,"url":null,"abstract":"Phase-shifted fiber Bragg grating (PS-FBG) inscription in nonphotosensitive single mode fiber (SMF) by the fusion splicing technique and femtosecond laser is reported. Two SMFs are fusion spliced to introduce a refractive index modulation point which acts as a phase shift, then exposing the fusion spliced fiber with femtosecond laser and a uniform phase mask. Two dips can be observed in the transmission spectrum of inscribed grating, and the max induced refractive index modulation can reach to 4.2×10−4 without any fiber sensitization for a peak power density of 4.5×1013 W/cm2. The annealing tests show that type I PS-FBG is successfully inscribed. This type of grating also shows good strain and pressure characteristics. Such PS-FBGs can be potentially used for optical fiber lasers, filters and sensors.","PeriodicalId":222009,"journal":{"name":"2016 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005738503560360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Phase-shifted fiber Bragg grating (PS-FBG) inscription in nonphotosensitive single mode fiber (SMF) by the fusion splicing technique and femtosecond laser is reported. Two SMFs are fusion spliced to introduce a refractive index modulation point which acts as a phase shift, then exposing the fusion spliced fiber with femtosecond laser and a uniform phase mask. Two dips can be observed in the transmission spectrum of inscribed grating, and the max induced refractive index modulation can reach to 4.2×10−4 without any fiber sensitization for a peak power density of 4.5×1013 W/cm2. The annealing tests show that type I PS-FBG is successfully inscribed. This type of grating also shows good strain and pressure characteristics. Such PS-FBGs can be potentially used for optical fiber lasers, filters and sensors.