Safe importance sampling based on partial posteriors and neural variational approximations

F. Llorente, E. Curbelo, L. Martino, P. Olmos, D. Delgado
{"title":"Safe importance sampling based on partial posteriors and neural variational approximations","authors":"F. Llorente, E. Curbelo, L. Martino, P. Olmos, D. Delgado","doi":"10.23919/eusipco55093.2022.9909576","DOIUrl":null,"url":null,"abstract":"In this work, we present two novel importance sampling (IS) methods, which can be considered safe in the sense that they avoid catastrophic scenarios where the IS estimators could have infinite variance. This is obtained by using a population of proposal densities where each one is wider than the posterior distribution. In fact, we consider partial posterior distributions (i.e., considering a smaller number of data) as proposal densities. Neuronal variational approximations are also discussed. The experimental results show the benefits of the proposed schemes.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present two novel importance sampling (IS) methods, which can be considered safe in the sense that they avoid catastrophic scenarios where the IS estimators could have infinite variance. This is obtained by using a population of proposal densities where each one is wider than the posterior distribution. In fact, we consider partial posterior distributions (i.e., considering a smaller number of data) as proposal densities. Neuronal variational approximations are also discussed. The experimental results show the benefits of the proposed schemes.
基于部分后验和神经变分近似的安全重要性抽样
在这项工作中,我们提出了两种新的重要性抽样(IS)方法,它们可以被认为是安全的,因为它们避免了IS估计器可能具有无限方差的灾难性场景。这是通过使用建议密度的总体来获得的,其中每个密度都比后验分布更宽。事实上,我们考虑部分后验分布(即考虑较少数量的数据)作为建议密度。神经变分逼近也进行了讨论。实验结果表明了所提方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信