Model-based analytics for profiling workloads in virtual network functions

R. Bruschi, F. Davoli, P. Lago, Jane Frances Pajo
{"title":"Model-based analytics for profiling workloads in virtual network functions","authors":"R. Bruschi, F. Davoli, P. Lago, Jane Frances Pajo","doi":"10.1109/INFCOMW.2017.8116498","DOIUrl":null,"url":null,"abstract":"With the flexibility and programmability levels offered by Network Functions Virtualization (NFV), it is expected to catalyze the upcoming “softwarization” of the network through software implementation of networking functionalities on virtual machines (VMs). While looking into the different issues thrown at NFV, numerous works have demonstrated how performance, power consumption and, consequently, the optimal resource configuration and VM allocation vary with the statistical features of the workload — specifically, the “burstiness” of the traffic. This paper proposes a model-based analytics approach for profiling (virtual) network function (VNF) workloads that captures traffic burstiness, considering — and adding value to — hardware/software performance monitor counters (PMCs) available in Linux host servers. Results show good estimation accuracies for the chosen PMCs, which can be useful to enhance current methods for finegrained provisioning, usage-based pricing and anomaly detection, and facilitate the way towards an agile network.","PeriodicalId":306731,"journal":{"name":"2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFCOMW.2017.8116498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the flexibility and programmability levels offered by Network Functions Virtualization (NFV), it is expected to catalyze the upcoming “softwarization” of the network through software implementation of networking functionalities on virtual machines (VMs). While looking into the different issues thrown at NFV, numerous works have demonstrated how performance, power consumption and, consequently, the optimal resource configuration and VM allocation vary with the statistical features of the workload — specifically, the “burstiness” of the traffic. This paper proposes a model-based analytics approach for profiling (virtual) network function (VNF) workloads that captures traffic burstiness, considering — and adding value to — hardware/software performance monitor counters (PMCs) available in Linux host servers. Results show good estimation accuracies for the chosen PMCs, which can be useful to enhance current methods for finegrained provisioning, usage-based pricing and anomaly detection, and facilitate the way towards an agile network.
用于分析虚拟网络功能中的工作负载的基于模型的分析
借助网络功能虚拟化(NFV)提供的灵活性和可编程性水平,它有望通过在虚拟机(vm)上实现网络功能的软件实现,催化即将到来的网络“软件化”。在研究NFV引发的不同问题时,许多工作已经证明了性能、功耗以及最佳资源配置和VM分配如何随着工作负载的统计特征而变化——特别是流量的“突发”。本文提出了一种基于模型的分析方法,用于分析捕获流量突发的(虚拟)网络功能(VNF)工作负载,考虑并增加Linux主机服务器中可用的硬件/软件性能监控计数器(pmc)的价值。结果表明,所选择的pmc具有良好的估计精度,这有助于增强当前的细粒度供应、基于使用的定价和异常检测方法,并为实现敏捷网络提供便利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信