EVALUATION OF COST-SAVING MACHINE LEARNING METHODS FOR PATIENT BLOOD MANAGEMENT

Davide Brinati, Andrea Seveso, P. Perazzo, G. Banfi, F. Cabitza
{"title":"EVALUATION OF COST-SAVING MACHINE LEARNING METHODS FOR PATIENT BLOOD MANAGEMENT","authors":"Davide Brinati, Andrea Seveso, P. Perazzo, G. Banfi, F. Cabitza","doi":"10.33965/eh2020_202009l023","DOIUrl":null,"url":null,"abstract":"Our objective is the development of cost-saving methods for the patient blood management in Galeazzi Orthopedic Institute, a large Italian hospital. The methods have been developed in relation to the known costs of the hospital, both in terms of unused blood bags and drugs. Observational data about 4593 patients have been retrieved, with anagraphical and pre-operational clinical features. Model’s performances have been compared to an existing baseline in terms of both accuracy measures (F1, recall, AUC) and saved costs per patient. The proposed methods recorded an enhancement of performances for the adopted measures, demonstrating a possible useful application of machine-learning-based methods for the patient blood management task.","PeriodicalId":393647,"journal":{"name":"Proceedings of the 12th International Conference on e-Health (EH2020)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on e-Health (EH2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33965/eh2020_202009l023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our objective is the development of cost-saving methods for the patient blood management in Galeazzi Orthopedic Institute, a large Italian hospital. The methods have been developed in relation to the known costs of the hospital, both in terms of unused blood bags and drugs. Observational data about 4593 patients have been retrieved, with anagraphical and pre-operational clinical features. Model’s performances have been compared to an existing baseline in terms of both accuracy measures (F1, recall, AUC) and saved costs per patient. The proposed methods recorded an enhancement of performances for the adopted measures, demonstrating a possible useful application of machine-learning-based methods for the patient blood management task.
节省成本的机器学习方法在患者血液管理中的评价
我们的目标是为意大利一家大型医院Galeazzi骨科研究所的患者血液管理开发节省成本的方法。这些方法是根据医院的已知费用制定的,包括未使用的血袋和药品。共检索到4593例患者的观察性资料,包括术中及术前临床特征。模型的性能在准确性测量(F1,召回率,AUC)和每位患者节省的成本方面与现有基线进行了比较。所提出的方法记录了所采用措施的性能增强,展示了基于机器学习的方法在患者血液管理任务中的可能有用的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信