Nonlinear Adaptive Narrowband-Interference Mitigation in Generalized Gaussian Noise Channels

D. C. Shin, C. Nikias
{"title":"Nonlinear Adaptive Narrowband-Interference Mitigation in Generalized Gaussian Noise Channels","authors":"D. C. Shin, C. Nikias","doi":"10.1109/SSAP.1994.572484","DOIUrl":null,"url":null,"abstract":"A nonlinear adaptive interference mitigation (AIM) algorithm is introduced when the signal of interest is a broadband signal, the additive strong interference is a narrowband signal, and its channel noise distribution belongs to generalized Gaussian distributions. The nonlinear function for the new AIM algorithm is obtained by using Taylor series ezpansion and properties of the generalized Gaussian distributions. Its filter weights are adoptively adjusted through the normalized LMS algorithm. Through MonteCarlo runs, its performance is demonstrated and compared with that of ezisting linear and nonlinear AIM algorithms, when the channel noise distribution is Laplace.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A nonlinear adaptive interference mitigation (AIM) algorithm is introduced when the signal of interest is a broadband signal, the additive strong interference is a narrowband signal, and its channel noise distribution belongs to generalized Gaussian distributions. The nonlinear function for the new AIM algorithm is obtained by using Taylor series ezpansion and properties of the generalized Gaussian distributions. Its filter weights are adoptively adjusted through the normalized LMS algorithm. Through MonteCarlo runs, its performance is demonstrated and compared with that of ezisting linear and nonlinear AIM algorithms, when the channel noise distribution is Laplace.
广义高斯噪声信道的非线性自适应窄带干扰抑制
针对目标信号为宽带信号、加性强干扰为窄带信号、信道噪声分布属于广义高斯分布的情况,提出了一种非线性自适应干扰抑制算法。利用泰勒级数展开和广义高斯分布的性质,得到了新AIM算法的非线性函数。通过归一化LMS算法自适应调整滤波器权值。通过MonteCarlo运行,验证了该算法在信道噪声分布为拉普拉斯时的性能,并与已有的线性和非线性AIM算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信