K. Yoshioka, Tomohiko Sugimoto, N. Waki, Sinnyoung Kim, Daisuke Kurose, Hirotomo Ishii, M. Furuta, A. Sai, T. Itakura
{"title":"28.7 A 0.7V 12b 160MS/s 12.8fJ/conv-step pipelined-SAR ADC in 28nm CMOS with digital amplifier technique","authors":"K. Yoshioka, Tomohiko Sugimoto, N. Waki, Sinnyoung Kim, Daisuke Kurose, Hirotomo Ishii, M. Furuta, A. Sai, T. Itakura","doi":"10.1109/ISSCC.2017.7870469","DOIUrl":null,"url":null,"abstract":"Wireless standards, e.g. 802.11ac Wave 2 and 802.11ax draft, aim to boost user throughput to cope with growing data traffic. High-speed (fs>100MS/s) and high-resolution (ENOB>9.5b) ADCs are essential for leading-edge wireless SoCs, given the bandwidth and PAPR specifications. Also, low power dissipation (FoM<20fJ/conv) is crucial for mobile applications. A number of pipelined-SAR ADCs have been presented which satisfy these design targets [1–3]. However, in deep submicron CMOS, design of a high DC-gain opamp for the MDAC is a serious obstacle due to reduced intrinsic transistor gain and sub-1V supply voltage. Hence, all designs utilize digital calibration to counter gain error and tolerate the use of a low-gain amplifier. Calibration times of at least several tens of ms are required, resulting in lengthy start-up times and reduced SoC power efficiency. Moreover, such calibration cannot track sudden supply voltage variations and suppressing such fluctuations with bypass capacitors significantly impacts chip cost [1–2]. Furthermore, amplifier non-linearity remains unsolved; with lower supply voltages, the limited amplifier swing tightens SAR noise requirements.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Wireless standards, e.g. 802.11ac Wave 2 and 802.11ax draft, aim to boost user throughput to cope with growing data traffic. High-speed (fs>100MS/s) and high-resolution (ENOB>9.5b) ADCs are essential for leading-edge wireless SoCs, given the bandwidth and PAPR specifications. Also, low power dissipation (FoM<20fJ/conv) is crucial for mobile applications. A number of pipelined-SAR ADCs have been presented which satisfy these design targets [1–3]. However, in deep submicron CMOS, design of a high DC-gain opamp for the MDAC is a serious obstacle due to reduced intrinsic transistor gain and sub-1V supply voltage. Hence, all designs utilize digital calibration to counter gain error and tolerate the use of a low-gain amplifier. Calibration times of at least several tens of ms are required, resulting in lengthy start-up times and reduced SoC power efficiency. Moreover, such calibration cannot track sudden supply voltage variations and suppressing such fluctuations with bypass capacitors significantly impacts chip cost [1–2]. Furthermore, amplifier non-linearity remains unsolved; with lower supply voltages, the limited amplifier swing tightens SAR noise requirements.