Printed/handwritten Arabic script identification using local features and GMMs

Anis Mezghani, Fouad Slimane, S. Kanoun, V. Märgner
{"title":"Printed/handwritten Arabic script identification using local features and GMMs","authors":"Anis Mezghani, Fouad Slimane, S. Kanoun, V. Märgner","doi":"10.1109/ICTIA.2014.7883758","DOIUrl":null,"url":null,"abstract":"Since printed/handwritten Arabic text recognition is a very challenging research field and the recognition methodologies are different, it is important to separate these two types of texts before the recognition phase. In this paper, we introduce a simple and effective method to identify printed and handwritten Arabic words using local features. A Gaussian Mixture Models (GMMs) based approach is used to model the printed and handwritten classes. Experimental results using some parts of the freely available IFN/ENIT, AHTID/MW and APTI databases show that our method is robust and provides very good identification performance.","PeriodicalId":390925,"journal":{"name":"2014 Information and Communication Technologies Innovation and Application (ICTIA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information and Communication Technologies Innovation and Application (ICTIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTIA.2014.7883758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Since printed/handwritten Arabic text recognition is a very challenging research field and the recognition methodologies are different, it is important to separate these two types of texts before the recognition phase. In this paper, we introduce a simple and effective method to identify printed and handwritten Arabic words using local features. A Gaussian Mixture Models (GMMs) based approach is used to model the printed and handwritten classes. Experimental results using some parts of the freely available IFN/ENIT, AHTID/MW and APTI databases show that our method is robust and provides very good identification performance.
使用当地特征和gmm进行印刷/手写阿拉伯文字识别
由于印刷/手写阿拉伯文文本识别是一个非常具有挑战性的研究领域,并且识别方法不同,因此在识别阶段之前将这两种类型的文本分开是很重要的。本文介绍了一种简单有效的利用局部特征识别印刷和手写阿拉伯语单词的方法。采用基于高斯混合模型的方法对打印类和手写类进行建模。利用免费的IFN/ENIT、AHTID/MW和APTI数据库的部分数据进行的实验结果表明,该方法具有良好的鲁棒性和识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信