Etienne Pot, Maiya Hori, Atsushi Shimada, H. Nagahara, R. Taniguchi
{"title":"Person re-identification visualization tool for object tracking across non-overlapping cameras","authors":"Etienne Pot, Maiya Hori, Atsushi Shimada, H. Nagahara, R. Taniguchi","doi":"10.1109/AVSS.2015.7301740","DOIUrl":null,"url":null,"abstract":"In this paper, we present a visualization tool for person re-identification when tracking objects across non-overlapping cameras. Tracking objects across non-overlapping cameras is challenging because the observations from different cameras are widely separated in both time and space. Hence, these systems need a large amount of labeled training data. Commonly, this training data is constructed manually at significant human cost. We support this process efficiently by visualizing the correspondences of objects across multiple cameras. Our tool facilitates the construction of a database for person re-identification with ease. Moreover, the accuracy of person re-identification can be increased using the generated database because the amount of training data is increased. In the experiments, we apply the proposed tool to real world situations to verify the validity of the proposed system.","PeriodicalId":101864,"journal":{"name":"2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2015.7301740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a visualization tool for person re-identification when tracking objects across non-overlapping cameras. Tracking objects across non-overlapping cameras is challenging because the observations from different cameras are widely separated in both time and space. Hence, these systems need a large amount of labeled training data. Commonly, this training data is constructed manually at significant human cost. We support this process efficiently by visualizing the correspondences of objects across multiple cameras. Our tool facilitates the construction of a database for person re-identification with ease. Moreover, the accuracy of person re-identification can be increased using the generated database because the amount of training data is increased. In the experiments, we apply the proposed tool to real world situations to verify the validity of the proposed system.