Camera Calibration Simulation using a Randomly Generated Spherical Point Distribution

Ahmad Roumie, Elie A. Shammas, Daniel C. Asmar
{"title":"Camera Calibration Simulation using a Randomly Generated Spherical Point Distribution","authors":"Ahmad Roumie, Elie A. Shammas, Daniel C. Asmar","doi":"10.1109/IMCET.2018.8603056","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method that utilizes computer vision, specifically projective geometry, to map a known distribution of points on a sphere - with known diameter - along with an arbitrary image of these points on an image plane to identify the configuration of the camera. In other words, knowing the sets of 2D-3D corresponding points, one can extract the camera matrix and dissect it into parameters of interest: intrinsics and extrinsics. The method that is validated by code shows in detail how to setup a theoretical world and camera coordinate frame, and then through the knowledge of the correspondence, displays the solution to the optimization problem. The results are then analyzed noting the relative error between the retrieved and actual camera matrices.","PeriodicalId":220641,"journal":{"name":"2018 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCET.2018.8603056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a method that utilizes computer vision, specifically projective geometry, to map a known distribution of points on a sphere - with known diameter - along with an arbitrary image of these points on an image plane to identify the configuration of the camera. In other words, knowing the sets of 2D-3D corresponding points, one can extract the camera matrix and dissect it into parameters of interest: intrinsics and extrinsics. The method that is validated by code shows in detail how to setup a theoretical world and camera coordinate frame, and then through the knowledge of the correspondence, displays the solution to the optimization problem. The results are then analyzed noting the relative error between the retrieved and actual camera matrices.
使用随机生成的球面点分布的相机校准模拟
在本文中,我们提出了一种利用计算机视觉,特别是射影几何的方法,将已知直径的球体上的已知点分布与图像平面上这些点的任意图像进行映射,以识别相机的配置。换句话说,知道2D-3D对应点的集合,就可以提取相机矩阵并将其分解为感兴趣的参数:内在和外在。该方法通过代码验证,详细说明了如何建立理论世界和摄像机坐标系,然后通过对对应关系的了解,给出了优化问题的求解方法。然后对结果进行分析,注意检索到的与实际相机矩阵之间的相对误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信