MUAR: Maximizing Utilization of Available Resources for Query Processing

Mayank Patel, Minal Bhise
{"title":"MUAR: Maximizing Utilization of Available Resources for Query Processing","authors":"Mayank Patel, Minal Bhise","doi":"10.1109/CCGridW59191.2023.00040","DOIUrl":null,"url":null,"abstract":"Processing large datasets requires significant hardware resources and energy. Researchers have observed that most database management systems could not utilize available resources efficiently, increasing data to result time and application running costs. This research explores techniques that can maximize the utilization of available resources to efficiently process large datasets on limited resource systems. The work implemented single and multiple resource maximization techniques and observed improvements in total workload execution time (WET). Results showed that combining CPU and RAM resource maximization techniques can reduce WET by 61-81% compared to the original WET observed with default resource allocation configuration. This work proposes a lightweight real-time resource allocation and task scheduling algorithm MUAR (Maximizing Utilization of Available Resources). It maximizes the utilization of available resources considering the real-time availability of resources and workload task complexity. The algorithm identifies complex multi-join queries and allocates maximum available resources for faster execution. MUAR is capable of estimating work memory value with 15-20% error required to achieve the best query performance with only single query run data. A comparison of MUAR with machine learning-based techniques like PCC and AutoToken is also presented.","PeriodicalId":341115,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing Workshops (CCGridW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGridW59191.2023.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Processing large datasets requires significant hardware resources and energy. Researchers have observed that most database management systems could not utilize available resources efficiently, increasing data to result time and application running costs. This research explores techniques that can maximize the utilization of available resources to efficiently process large datasets on limited resource systems. The work implemented single and multiple resource maximization techniques and observed improvements in total workload execution time (WET). Results showed that combining CPU and RAM resource maximization techniques can reduce WET by 61-81% compared to the original WET observed with default resource allocation configuration. This work proposes a lightweight real-time resource allocation and task scheduling algorithm MUAR (Maximizing Utilization of Available Resources). It maximizes the utilization of available resources considering the real-time availability of resources and workload task complexity. The algorithm identifies complex multi-join queries and allocates maximum available resources for faster execution. MUAR is capable of estimating work memory value with 15-20% error required to achieve the best query performance with only single query run data. A comparison of MUAR with machine learning-based techniques like PCC and AutoToken is also presented.
MUAR:最大限度地利用查询处理的可用资源
处理大型数据集需要大量的硬件资源和能源。研究人员观察到,大多数数据库管理系统不能有效地利用可用资源,从而增加了数据生成时间和应用程序运行成本。本研究探索的技术可以最大限度地利用可用资源,以有效地处理有限资源系统上的大型数据集。该工作实现了单个和多个资源最大化技术,并观察到总工作负载执行时间(WET)的改进。结果表明,与使用默认资源分配配置观察到的原始WET相比,结合CPU和RAM资源最大化技术可以将WET减少61-81%。本文提出了一种轻量级的实时资源分配和任务调度算法MUAR(最大化利用可用资源)。它考虑到资源的实时可用性和工作负载任务的复杂性,最大限度地利用可用资源。该算法识别复杂的多连接查询,并为更快的执行分配最大可用资源。MUAR能够以15-20%的误差估计工作内存值,从而仅使用单个查询运行数据实现最佳查询性能。将MUAR与基于机器学习的技术(如PCC和AutoToken)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信