Predicting Blogging Behavior Using Temporal and Social Networks

Bi Chen, Qiankun Zhao, Bingjun Sun, P. Mitra
{"title":"Predicting Blogging Behavior Using Temporal and Social Networks","authors":"Bi Chen, Qiankun Zhao, Bingjun Sun, P. Mitra","doi":"10.1109/ICDM.2007.97","DOIUrl":null,"url":null,"abstract":"Modeling the behavior of bloggers is an important problem with various applications in recommender systems, targeted advertising, and event detection. In this paper, we propose three models by combining content, temporal, social dimensions: the general blogging-behavior model, the profile-based blogging-behavior model and the social- network and profile-based blogging-behavior model. The models are based on two regression techniques: Extreme Learning Machine (ELM), and Modified General Regression Neural Network (MGRNN). We choose one of the largest blogs, a political blog, DailyKos1, for our empirical evaluation. Experiments show that the social network and profile-based blogging behavior model with ELM regression techniques produce good results for the most active bloggers and can be used to predict blogging behavior.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Modeling the behavior of bloggers is an important problem with various applications in recommender systems, targeted advertising, and event detection. In this paper, we propose three models by combining content, temporal, social dimensions: the general blogging-behavior model, the profile-based blogging-behavior model and the social- network and profile-based blogging-behavior model. The models are based on two regression techniques: Extreme Learning Machine (ELM), and Modified General Regression Neural Network (MGRNN). We choose one of the largest blogs, a political blog, DailyKos1, for our empirical evaluation. Experiments show that the social network and profile-based blogging behavior model with ELM regression techniques produce good results for the most active bloggers and can be used to predict blogging behavior.
使用时间和社会网络预测博客行为
在推荐系统、目标广告和事件检测等各种应用程序中,对博主的行为建模是一个重要问题。本文结合内容、时间、社会三个维度,提出了一般博客行为模型、基于个人档案的博客行为模型和基于社会网络和个人档案的博客行为模型。该模型基于两种回归技术:极限学习机(ELM)和修正广义回归神经网络(MGRNN)。我们选择了一个最大的博客,一个政治博客,DailyKos1,来进行我们的实证评估。实验表明,结合ELM回归技术的基于社交网络和个人资料的博客行为模型对最活跃的博主产生了良好的结果,可以用于预测博客行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信