Face recognition based on discriminative manifold learning

Yiming Wu, K. Chan, Lei Wang
{"title":"Face recognition based on discriminative manifold learning","authors":"Yiming Wu, K. Chan, Lei Wang","doi":"10.1109/ICPR.2004.1333731","DOIUrl":null,"url":null,"abstract":"In this paper, a discriminative manifold learning method for face recognition is proposed which achieved the discriminative embedding the high dimensional face data into a low dimensional hidden manifold. Unlike the recently proposed LLE, Isomap and Eigenmap algorithms, which are based on reconstruction purpose, our method uses the RCA algorithm to achieve nonlinear embedding and data discrimination at the same time. Also, the LLE and Isomap algorithms are crucially depends on the appropriateness of the neighborhood construction rule, in this paper, a CK-nearest neighborhood rule is proposed to achieve better neighborhood construction. Experimental results indicate the promising performance of the proposed method.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1333731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

In this paper, a discriminative manifold learning method for face recognition is proposed which achieved the discriminative embedding the high dimensional face data into a low dimensional hidden manifold. Unlike the recently proposed LLE, Isomap and Eigenmap algorithms, which are based on reconstruction purpose, our method uses the RCA algorithm to achieve nonlinear embedding and data discrimination at the same time. Also, the LLE and Isomap algorithms are crucially depends on the appropriateness of the neighborhood construction rule, in this paper, a CK-nearest neighborhood rule is proposed to achieve better neighborhood construction. Experimental results indicate the promising performance of the proposed method.
基于判别流形学习的人脸识别
提出了一种判别流形学习人脸识别方法,实现了将高维人脸数据判别嵌入到低维隐藏流形中。与最近提出的基于重建目的的LLE、Isomap和Eigenmap算法不同,我们的方法使用RCA算法同时实现了非线性嵌入和数据识别。此外,LLE和Isomap算法对邻域构造规则的适宜性至关重要,本文提出了一种ck -最近邻规则来实现更好的邻域构造。实验结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信