Supervised Classification of Spectral Signatures from Agricultural Land-Cover in Panama Using the Spectral Angle Mapper Algorithm

J. Sánchez-Galán, Jorge Serrano Reyes, J. U. Jiménez, E. Quirós-McIntire, J. Fábrega
{"title":"Supervised Classification of Spectral Signatures from Agricultural Land-Cover in Panama Using the Spectral Angle Mapper Algorithm","authors":"J. Sánchez-Galán, Jorge Serrano Reyes, J. U. Jiménez, E. Quirós-McIntire, J. Fábrega","doi":"10.1109/CLEI47609.2019.235101","DOIUrl":null,"url":null,"abstract":"In this article the development of a database of referenced spectral signatures from agricultural land-cover for the Republic of Panama is presented. This database consists of reflectance spectra measured on crops and low vegetation, such as: rice, chili, onion, watermelon, maize and bare soil and of satellite images of their plots. Details of the integration process of the database and software developed for the manipulation of spectral signatures, are described. The Spectral Angle Mapping algorithm (SAM) is used for the supervised classification of the agricultural coverages in the database. On the one hand, results indicate the possibility of using this classification technique for the automatic determination of crops and even different phenological stages in a crop via a satellite image. On the other hand, results highlight the limitations of using this technique on recently planted crops and soil flooded by rain or with soil cultivated with a low agricultural cover crop. We foresee the use of this methodology and database for agricultural land surveys, crop management or used in the general organization of the territory.","PeriodicalId":216193,"journal":{"name":"2019 XLV Latin American Computing Conference (CLEI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 XLV Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI47609.2019.235101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this article the development of a database of referenced spectral signatures from agricultural land-cover for the Republic of Panama is presented. This database consists of reflectance spectra measured on crops and low vegetation, such as: rice, chili, onion, watermelon, maize and bare soil and of satellite images of their plots. Details of the integration process of the database and software developed for the manipulation of spectral signatures, are described. The Spectral Angle Mapping algorithm (SAM) is used for the supervised classification of the agricultural coverages in the database. On the one hand, results indicate the possibility of using this classification technique for the automatic determination of crops and even different phenological stages in a crop via a satellite image. On the other hand, results highlight the limitations of using this technique on recently planted crops and soil flooded by rain or with soil cultivated with a low agricultural cover crop. We foresee the use of this methodology and database for agricultural land surveys, crop management or used in the general organization of the territory.
利用光谱角映射算法对巴拿马农业土地覆盖光谱特征进行监督分类
本文介绍了巴拿马共和国农业土地覆盖参考光谱特征数据库的开发。该数据库包括在水稻、辣椒、洋葱、西瓜、玉米和裸地等作物和低植被上测量的反射光谱及其地块的卫星图像。详细描述了数据库和用于谱特征处理的软件的集成过程。利用光谱角映射算法(SAM)对数据库中的农业覆盖进行监督分类。一方面,研究结果表明,利用该分类技术可以通过卫星图像自动确定作物,甚至作物的不同物候阶段。另一方面,研究结果强调了在最近种植的作物和雨水淹没的土壤上或在农业覆盖作物较少的土壤上使用该技术的局限性。我们预见这种方法和数据库将用于农业土地调查、作物管理或用于领土的一般组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信