R. Rabbani, Hossein Najafiaghdam, Biqi Zhao, Megan Zeng, V. Stojanović, R. Muller, M. Anwar
{"title":"A $36\\times 40$ Wireless Fluorescence Image Sensor for Real-Time Microscopy in Cancer Therapy","authors":"R. Rabbani, Hossein Najafiaghdam, Biqi Zhao, Megan Zeng, V. Stojanović, R. Muller, M. Anwar","doi":"10.1109/CICC53496.2022.9772779","DOIUrl":null,"url":null,"abstract":"Real-time in vivo imaging provides detailed cellular information from targets inside the body. In cancer immunotherapy, for instance, this information can be utilized for early assessments of the treatment, where effective activation of the immune system leads to durable responses against cancer. While only 30% of the patients respond to the treatment, detailed multicellular-level information can help rapidly alter the therapy based on the individual's response. However, this is not possible with current modalities such as CT or MRI that image purely anatomic changes taking months to manifest, by the end of which the window of cure is lost. Moreover, continuous monitoring of the tumor via frequent biopsies is impractical due to the invasiveness of the procedure. To overcome these limitations, fluorescence microscopy can be used to identify multiple cell types within tissue during ongoing therapy.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Real-time in vivo imaging provides detailed cellular information from targets inside the body. In cancer immunotherapy, for instance, this information can be utilized for early assessments of the treatment, where effective activation of the immune system leads to durable responses against cancer. While only 30% of the patients respond to the treatment, detailed multicellular-level information can help rapidly alter the therapy based on the individual's response. However, this is not possible with current modalities such as CT or MRI that image purely anatomic changes taking months to manifest, by the end of which the window of cure is lost. Moreover, continuous monitoring of the tumor via frequent biopsies is impractical due to the invasiveness of the procedure. To overcome these limitations, fluorescence microscopy can be used to identify multiple cell types within tissue during ongoing therapy.