Bird sound recognition based on novel classifier

Guowei Lei, Qiang Shu, Ruixing Cai, Wenliang Liao
{"title":"Bird sound recognition based on novel classifier","authors":"Guowei Lei, Qiang Shu, Ruixing Cai, Wenliang Liao","doi":"10.1145/3556677.3556681","DOIUrl":null,"url":null,"abstract":"With the rapid development of the Internet, voice recognition has become one of the core technologies on information era. Bird monitoring through sound recognition can be used as an effective indicator of wetland environmental quality. In this paper, we use Python to classify birds based on the features of Mel frequency cepstrum coefficient via K-Nearest Neighbor, support vector machine and multi-layer perceptron. Further, we carry out the comparisons of these algorithms and propose a novel classifier on the base of them. The experimental results show that the new classifier absorbs the fast prediction speed of the Multi-Layer Perception, the high accuracy and strong noise immunity of the K-Nearest Neighbor.","PeriodicalId":350340,"journal":{"name":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556677.3556681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of the Internet, voice recognition has become one of the core technologies on information era. Bird monitoring through sound recognition can be used as an effective indicator of wetland environmental quality. In this paper, we use Python to classify birds based on the features of Mel frequency cepstrum coefficient via K-Nearest Neighbor, support vector machine and multi-layer perceptron. Further, we carry out the comparisons of these algorithms and propose a novel classifier on the base of them. The experimental results show that the new classifier absorbs the fast prediction speed of the Multi-Layer Perception, the high accuracy and strong noise immunity of the K-Nearest Neighbor.
基于新型分类器的鸟声识别
随着互联网的飞速发展,语音识别已成为信息时代的核心技术之一。通过声音识别对鸟类进行监测可以作为湿地环境质量的有效指标。在本文中,我们使用Python通过k -最近邻、支持向量机和多层感知器,基于Mel频率倒谱系数的特征对鸟类进行分类。进一步,我们对这些算法进行了比较,并在此基础上提出了一种新的分类器。实验结果表明,该分类器吸收了多层感知的快速预测速度、k近邻的高准确率和强抗噪性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信