Hybridized Swarm Metaheuristics for Evolutionary Random Forest Generation

M. Bursa, L. Lhotská, M. Macas
{"title":"Hybridized Swarm Metaheuristics for Evolutionary Random Forest Generation","authors":"M. Bursa, L. Lhotská, M. Macas","doi":"10.1109/HIS.2007.9","DOIUrl":null,"url":null,"abstract":"In many industry and research areas, data mining is a crucial process. This paper presents an evolving structure of classifiers (random forest) where the trees are generated by hybrid method combining ant colony metaheuristics and evolutionary computing technique. The method benefits from the stochastic process and population approach, which allows the algorithm to evolve more efficiently than each method alone. As the method is similar to random forest generation, it can be also used for feature selection. The paper also discusses the parameter estimation for the method. Tests on real data (UCI and real biomedical data) have been performed and evaluated. The average accuracy of the method over MIT-BIH database with normalized data and equalized classes is sensitivity 93.22 % and specificity 87.13 %.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2007.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In many industry and research areas, data mining is a crucial process. This paper presents an evolving structure of classifiers (random forest) where the trees are generated by hybrid method combining ant colony metaheuristics and evolutionary computing technique. The method benefits from the stochastic process and population approach, which allows the algorithm to evolve more efficiently than each method alone. As the method is similar to random forest generation, it can be also used for feature selection. The paper also discusses the parameter estimation for the method. Tests on real data (UCI and real biomedical data) have been performed and evaluated. The average accuracy of the method over MIT-BIH database with normalized data and equalized classes is sensitivity 93.22 % and specificity 87.13 %.
进化随机森林生成的杂交群元启发式算法
在许多工业和研究领域,数据挖掘是一个至关重要的过程。本文提出了一种进化的分类器结构(随机森林),其中树是由蚁群元启发式和进化计算技术相结合的混合方法生成的。该方法得益于随机过程和总体方法,这使得算法比单独使用每种方法更有效地进化。由于该方法类似于随机森林生成,因此也可以用于特征选择。文中还讨论了该方法的参数估计问题。对真实数据(UCI和真实生物医学数据)进行了测试并进行了评估。在具有归一化数据和均衡分类的MIT-BIH数据库上,该方法的平均准确率为灵敏度93.22%,特异性87.13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信