K. Kipli, Shankar Krishnan, N. Zamhari, M. Muhammad, S. Masra, Kho Lee Chin, K. Lias
{"title":"Full reference image quality metrics and their performance","authors":"K. Kipli, Shankar Krishnan, N. Zamhari, M. Muhammad, S. Masra, Kho Lee Chin, K. Lias","doi":"10.1109/CSPA.2011.5759838","DOIUrl":null,"url":null,"abstract":"This paper mainly aims to study the performance of objective assessment methods of image quality. It take into consideration the correlations between each objective assessment and the subjective assessment in order to determine objective test performance. Three objective assessment methods used in this study are the Structural Similarity (SSIM) index, the Peak Signal-to-Noise Ratio (PSNR) and the Mean Squared Error (MSE) calculating algorithm. The resulting data indicate what type of objective assessment was most suitable for which type of impairment imposed upon an image. This is clarified using the Pearson Correlation Coefficient as described in the paper. As an overall, SSIM index had the best correlation characteristics to the subjective assessment, followed by the MSE calculating algorithm. From this study, a better understanding of the requirements for developing an efficient image quality assessment method was gained.","PeriodicalId":282179,"journal":{"name":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2011.5759838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper mainly aims to study the performance of objective assessment methods of image quality. It take into consideration the correlations between each objective assessment and the subjective assessment in order to determine objective test performance. Three objective assessment methods used in this study are the Structural Similarity (SSIM) index, the Peak Signal-to-Noise Ratio (PSNR) and the Mean Squared Error (MSE) calculating algorithm. The resulting data indicate what type of objective assessment was most suitable for which type of impairment imposed upon an image. This is clarified using the Pearson Correlation Coefficient as described in the paper. As an overall, SSIM index had the best correlation characteristics to the subjective assessment, followed by the MSE calculating algorithm. From this study, a better understanding of the requirements for developing an efficient image quality assessment method was gained.