Deep Learning Methods for Virus Identification from Digital Images

Luxin Zhang, W. Yan
{"title":"Deep Learning Methods for Virus Identification from Digital Images","authors":"Luxin Zhang, W. Yan","doi":"10.1109/IVCNZ51579.2020.9290670","DOIUrl":null,"url":null,"abstract":"The use of deep learning methods for virus identification from digital images is a timely research topic. Given an electron microscopy image, virus recognition utilizing deep learning approaches is critical at present, because virus identification by human experts is relatively slow and time-consuming. In this project, our objective is to develop deep learning methods for automatic virus identification from digital images, there are four viral species taken into consideration, namely, SARS, MERS, HIV, and COVID-19. In this work, we firstly examine virus morphological characteristics and propose a novel loss function which aims at virus identification from the given electron micrographs. We take into account of attention mechanism for virus locating and classification from digital images. In order to generate the most reliable estimate of bounding boxes and classification for a virus as visual object, we train and test five deep learning models: R-CNN, Fast R-CNN, Faster R-CNN, YOLO, and SSD, based on our dataset of virus electron microscopy. Additionally, we explicate the evaluation approaches. The conclusion reveals SSD and Faster R-CNN outperform in the virus identification.","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The use of deep learning methods for virus identification from digital images is a timely research topic. Given an electron microscopy image, virus recognition utilizing deep learning approaches is critical at present, because virus identification by human experts is relatively slow and time-consuming. In this project, our objective is to develop deep learning methods for automatic virus identification from digital images, there are four viral species taken into consideration, namely, SARS, MERS, HIV, and COVID-19. In this work, we firstly examine virus morphological characteristics and propose a novel loss function which aims at virus identification from the given electron micrographs. We take into account of attention mechanism for virus locating and classification from digital images. In order to generate the most reliable estimate of bounding boxes and classification for a virus as visual object, we train and test five deep learning models: R-CNN, Fast R-CNN, Faster R-CNN, YOLO, and SSD, based on our dataset of virus electron microscopy. Additionally, we explicate the evaluation approaches. The conclusion reveals SSD and Faster R-CNN outperform in the virus identification.
基于数字图像的病毒识别深度学习方法
利用深度学习方法从数字图像中识别病毒是一个及时的研究课题。鉴于电子显微镜图像,目前利用深度学习方法进行病毒识别至关重要,因为由人类专家进行病毒识别相对缓慢且耗时。在这个项目中,我们的目标是开发从数字图像中自动识别病毒的深度学习方法,考虑了四种病毒,分别是SARS, MERS, HIV和COVID-19。在这项工作中,我们首先研究了病毒的形态特征,并提出了一种新的损失函数,旨在从给定的电子显微照片中识别病毒。利用注意机制对数字图像中的病毒进行定位和分类。为了生成最可靠的边界框估计和病毒作为视觉对象的分类,我们基于我们的病毒电子显微镜数据集训练和测试了五个深度学习模型:R-CNN、Fast R-CNN、Faster R-CNN、YOLO和SSD。此外,我们还阐述了评估方法。结果表明,SSD和Faster R-CNN在病毒识别方面表现较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信