Gesture recognition system using 2D-invariant moment feature and Elman neural network

M. Paulraj, C. Hema, S. Yaacob, Mohd Shuhanaz Zanar Azalan, R. Palaniappan
{"title":"Gesture recognition system using 2D-invariant moment feature and Elman neural network","authors":"M. Paulraj, C. Hema, S. Yaacob, Mohd Shuhanaz Zanar Azalan, R. Palaniappan","doi":"10.1504/IJAISC.2013.056826","DOIUrl":null,"url":null,"abstract":"This paper presents a simple sign language recognition system that has been developed using skin colour segmentation and Elman neural network. A simple segmentation process is carried out to separate the right and left hand. The 2D-invariant moments of the right and left hand segmented image are obtained as features. Using the 2D-invariant moment features, an Elman neural network model was developed. The system has been implemented and tested for its validity. Experimental results show that the system has a recognition rate of 90.63%.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2013.056826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a simple sign language recognition system that has been developed using skin colour segmentation and Elman neural network. A simple segmentation process is carried out to separate the right and left hand. The 2D-invariant moments of the right and left hand segmented image are obtained as features. Using the 2D-invariant moment features, an Elman neural network model was developed. The system has been implemented and tested for its validity. Experimental results show that the system has a recognition rate of 90.63%.
基于二维不变矩特征和Elman神经网络的手势识别系统
本文提出了一种基于肤色分割和Elman神经网络的简单手语识别系统。一个简单的分割过程进行分离的右手和左手。得到左右分割图像的二维不变矩作为特征。利用二维不变矩特征,建立了Elman神经网络模型。该系统已实现并经过测试,验证了其有效性。实验结果表明,该系统的识别率为90.63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信