A new method for ECG biometric recognition using a hierarchical scheme classifier

Yue Zhang, Youqun Shi
{"title":"A new method for ECG biometric recognition using a hierarchical scheme classifier","authors":"Yue Zhang, Youqun Shi","doi":"10.1109/ICSESS.2015.7339096","DOIUrl":null,"url":null,"abstract":"In this paper, a new method for ECG biometric recognition using a hierarchical scheme classifier is presented. The integral process of the method is introduced, including preprocessing, feature extraction and classification. To achieve a better performance of proposed method, cross-validation is applied to determine the parameters in the classifier. As a result, proposed method offers considerably high recognition rates when tested on MIT-BIH NSRDB. The total heartbeat recognition rate is 97.98%, and window recognition rate and subject recognition rate are both 100%.","PeriodicalId":335871,"journal":{"name":"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2015.7339096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a new method for ECG biometric recognition using a hierarchical scheme classifier is presented. The integral process of the method is introduced, including preprocessing, feature extraction and classification. To achieve a better performance of proposed method, cross-validation is applied to determine the parameters in the classifier. As a result, proposed method offers considerably high recognition rates when tested on MIT-BIH NSRDB. The total heartbeat recognition rate is 97.98%, and window recognition rate and subject recognition rate are both 100%.
一种基于层次分类器的心电生物特征识别新方法
本文提出了一种基于层次分类器的心电生物特征识别新方法。介绍了该方法的整体过程,包括预处理、特征提取和分类。为了获得更好的性能,采用交叉验证来确定分类器中的参数。结果表明,该方法在MIT-BIH NSRDB上具有较高的识别率。总心跳识别率为97.98%,窗口识别率和主体识别率均为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信