Optimal one-bit quantizers are asymmetric for additive uniform noise

G. Alirezaei, R. Mathar
{"title":"Optimal one-bit quantizers are asymmetric for additive uniform noise","authors":"G. Alirezaei, R. Mathar","doi":"10.1109/ITA.2017.8023459","DOIUrl":null,"url":null,"abstract":"In this paper, we consider one-bit output quantization of an amplitude bounded input-signal subject to arbitrary additive noise. Capacity is then represented in various ways, each demonstrating that finding the optimum quantization threshold q is an extremely difficult problem. For a class of noise distributions, of which a typical representative is the uniform distribution, it is shown that the optimum quantizer is asymmetric. This contradicts intuition, which for symmetric noise expects the optimum threshold to be the average of the input distribution.","PeriodicalId":305510,"journal":{"name":"2017 Information Theory and Applications Workshop (ITA)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2017.8023459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we consider one-bit output quantization of an amplitude bounded input-signal subject to arbitrary additive noise. Capacity is then represented in various ways, each demonstrating that finding the optimum quantization threshold q is an extremely difficult problem. For a class of noise distributions, of which a typical representative is the uniform distribution, it is shown that the optimum quantizer is asymmetric. This contradicts intuition, which for symmetric noise expects the optimum threshold to be the average of the input distribution.
最优的位量化器对于加性均匀噪声是不对称的
在本文中,我们考虑了一个具有任意加性噪声的有幅输入信号的一比特输出量化。然后以各种方式表示容量,每种方式都表明找到最佳量化阈值q是一个极其困难的问题。对于一类以均匀分布为典型代表的噪声分布,证明了最佳量化器是不对称的。这与直觉相矛盾,直觉认为对称噪声的最佳阈值是输入分布的平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信