Markov random fields for pattern extraction in analog wafer test data

Stefan Schrunner, Olivia Bluder, Anja Zernig, Andre Kästner, Roman Kern
{"title":"Markov random fields for pattern extraction in analog wafer test data","authors":"Stefan Schrunner, Olivia Bluder, Anja Zernig, Andre Kästner, Roman Kern","doi":"10.1109/IPTA.2017.8310124","DOIUrl":null,"url":null,"abstract":"In semiconductor industry it is of paramount importance to check whether a manufactured device fulfills all quality specifications and is therefore suitable for being sold to the customer. The occurrence of specific spatial patterns within the so-called wafer test data, i.e. analog electric measurements, might point out on production issues. However, the shape of these critical patterns is unknown. In this paper different kinds of process patterns are extracted from wafer test data by an image processing approach using Markov Random Field models for image restoration. The goal is to develop an automated procedure to identify visible patterns in wafer test data to improve pattern matching. This step is a necessary precondition for a subsequent root-cause analysis of these patterns. The developed pattern extraction algorithm yields a more accurate discrimination between distinct patterns, resulting in an improved pattern comparison than in the original dataset. In a next step pattern classification will be applied to improve the production process control.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In semiconductor industry it is of paramount importance to check whether a manufactured device fulfills all quality specifications and is therefore suitable for being sold to the customer. The occurrence of specific spatial patterns within the so-called wafer test data, i.e. analog electric measurements, might point out on production issues. However, the shape of these critical patterns is unknown. In this paper different kinds of process patterns are extracted from wafer test data by an image processing approach using Markov Random Field models for image restoration. The goal is to develop an automated procedure to identify visible patterns in wafer test data to improve pattern matching. This step is a necessary precondition for a subsequent root-cause analysis of these patterns. The developed pattern extraction algorithm yields a more accurate discrimination between distinct patterns, resulting in an improved pattern comparison than in the original dataset. In a next step pattern classification will be applied to improve the production process control.
模拟晶圆测试数据模式提取的马尔可夫随机场
在半导体工业中,检查制造的器件是否符合所有质量规范,从而适合销售给客户是至关重要的。所谓晶圆测试数据(即模拟电测量)中出现的特定空间模式可能会指出生产问题。然而,这些关键图案的形状是未知的。本文利用马尔科夫随机场模型对硅片测试数据进行图像处理,提取不同类型的过程模式。目标是开发一种自动化程序来识别晶圆测试数据中的可见模式,以改善模式匹配。这一步是对这些模式进行后续根本原因分析的必要前提。与原始数据集相比,所开发的模式提取算法在不同模式之间产生更准确的区分,从而提高了模式比较。下一步,图案分类将用于改进生产过程控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信