{"title":"The design and implementation of the model constructing satisfiability calculus","authors":"Dejan Jovanovic, Clark W. Barrett, L. de Moura","doi":"10.1109/FMCAD.2013.7027033","DOIUrl":null,"url":null,"abstract":"We present the design and implementation of the Model Constructing Satisfiability (MCSat) calculus. The MCSat calculus generalizes ideas found in CDCL-style propositional SAT solvers to SMT solvers, and provides a common framework where recent model-based procedures and techniques can be justified and combined. We describe how to incorporate support for linear real arithmetic and uninterpreted function symbols m the calculus. We report encouraging experimental results, where MCSat performs competitive with the state-of-the art SMT solvers without using pre-processing techniques and ad-hoc optimizations. The implementation is flexible, additional plugins can be easily added, and the code is freely available.","PeriodicalId":346097,"journal":{"name":"2013 Formal Methods in Computer-Aided Design","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Formal Methods in Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2013.7027033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
We present the design and implementation of the Model Constructing Satisfiability (MCSat) calculus. The MCSat calculus generalizes ideas found in CDCL-style propositional SAT solvers to SMT solvers, and provides a common framework where recent model-based procedures and techniques can be justified and combined. We describe how to incorporate support for linear real arithmetic and uninterpreted function symbols m the calculus. We report encouraging experimental results, where MCSat performs competitive with the state-of-the art SMT solvers without using pre-processing techniques and ad-hoc optimizations. The implementation is flexible, additional plugins can be easily added, and the code is freely available.