Imaging in the presence of direction-dependent effects with the MeerKAT radio telescope

O. Smirnov, B. Hugo, K. Asad, L. Bester, C. Tasse
{"title":"Imaging in the presence of direction-dependent effects with the MeerKAT radio telescope","authors":"O. Smirnov, B. Hugo, K. Asad, L. Bester, C. Tasse","doi":"10.1109/iceaa.2019.8879072","DOIUrl":null,"url":null,"abstract":"The radio interferometer measurement equation [1] describes the visibilities measured by a radio interferometer in the following succinct form [2]. For a pair of antennas (i.e. baseline) <tex>$p$</tex> and <tex>$q$</tex>, the measured <tex>$2\\times 2$</tex> complex visibility matrix <tex>$\\mathbf{V}_{pq}$</tex> is given by \\begin{equation*} \\mathbf{V}_{pq}=\\iint\\limits_{lm}\\mathbf{E}_{p}\\mathbf{BE}_{q}^{H}\\mathrm{e}^{-2\\pi \\iota\\lambda^{-1}(\\mathbf{u}_{pq}\\cdot\\mathbf{l})}\\mathrm{d}l\\mathrm{d}m+\\mathbf{N}_{pq} \\tag{1} \\end{equation*} where <tex>$\\mathbf{B}(l, m)$</tex> is a <tex>$2\\times 2$</tex> matrix describing the (in general, polarized) sky brightness distribution on the tangential plane <tex>$l, m, \\mathbf{E}_{p}(l, m)$</tex> is a <tex>$2\\times 2$</tex> Jones matrix describing the propagation effects for antenna <tex>$p$</tex> in the direction <tex>$l, m, \\mathbf{u}_{pq}$</tex> is the baseline vector, <tex>$\\mathbf{l}=l, m, n$</tex> is the direction cosine vector, <tex>$\\lambda$</tex> is wavelength, and <tex>$\\mathbf{N}_{\\text{pq}}$</tex> is a <tex>$2\\times 2$</tex> additive complex normal noise term. Inverting eq. 1 to recover <tex>$\\mathbf{B}$</tex> from measurements is known as the imaging problem. The problem is ill-posed, particularly so if the <tex>$\\mathbf{E}$</tex> term is non-trivial (relative to the sensitivity of the telescope given by <tex>$\\mathbf{N}$</tex>); in the latter regime, it is known as the direction-dependent effect (DDE) problem.","PeriodicalId":237030,"journal":{"name":"2019 International Conference on Electromagnetics in Advanced Applications (ICEAA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electromagnetics in Advanced Applications (ICEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iceaa.2019.8879072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The radio interferometer measurement equation [1] describes the visibilities measured by a radio interferometer in the following succinct form [2]. For a pair of antennas (i.e. baseline) $p$ and $q$, the measured $2\times 2$ complex visibility matrix $\mathbf{V}_{pq}$ is given by \begin{equation*} \mathbf{V}_{pq}=\iint\limits_{lm}\mathbf{E}_{p}\mathbf{BE}_{q}^{H}\mathrm{e}^{-2\pi \iota\lambda^{-1}(\mathbf{u}_{pq}\cdot\mathbf{l})}\mathrm{d}l\mathrm{d}m+\mathbf{N}_{pq} \tag{1} \end{equation*} where $\mathbf{B}(l, m)$ is a $2\times 2$ matrix describing the (in general, polarized) sky brightness distribution on the tangential plane $l, m, \mathbf{E}_{p}(l, m)$ is a $2\times 2$ Jones matrix describing the propagation effects for antenna $p$ in the direction $l, m, \mathbf{u}_{pq}$ is the baseline vector, $\mathbf{l}=l, m, n$ is the direction cosine vector, $\lambda$ is wavelength, and $\mathbf{N}_{\text{pq}}$ is a $2\times 2$ additive complex normal noise term. Inverting eq. 1 to recover $\mathbf{B}$ from measurements is known as the imaging problem. The problem is ill-posed, particularly so if the $\mathbf{E}$ term is non-trivial (relative to the sensitivity of the telescope given by $\mathbf{N}$); in the latter regime, it is known as the direction-dependent effect (DDE) problem.
MeerKAT射电望远镜在存在方向依赖效应的情况下成像
无线电干涉仪测量方程[1]以以下简明形式[2]描述了无线电干涉仪测量的能见度。对于一对天线(即基线)$p$和$q$,测量到的$2\times 2$复杂可见性矩阵$\mathbf{V}_{pq}$由\begin{equation*} \mathbf{V}_{pq}=\iint\limits_{lm}\mathbf{E}_{p}\mathbf{BE}_{q}^{H}\mathrm{e}^{-2\pi \iota\lambda^{-1}(\mathbf{u}_{pq}\cdot\mathbf{l})}\mathrm{d}l\mathrm{d}m+\mathbf{N}_{pq} \tag{1} \end{equation*}给出,其中$\mathbf{B}(l, m)$是一个$2\times 2$矩阵,描述(通常,切向平面上的天空亮度分布$l, m, \mathbf{E}_{p}(l, m)$为描述天线$p$在方向上传播效果的$2\times 2$琼斯矩阵$l, m, \mathbf{u}_{pq}$为基线矢量,$\mathbf{l}=l, m, n$为方向余弦矢量,$\lambda$为波长,$\mathbf{N}_{\text{pq}}$为$2\times 2$加性复正噪声项。将eq. 1反转以从测量中恢复$\mathbf{B}$被称为成像问题。这个问题是不适定的,特别是如果$\mathbf{E}$项是非平凡的(相对于$\mathbf{N}$给出的望远镜的灵敏度);在后一种情况下,它被称为方向依赖效应(DDE)问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信