Parameter Optimization for Nadaraya-Watson Kernel Regression Method with Small Samples

Fengping Li, Yuqing Zhou, Xue Wei
{"title":"Parameter Optimization for Nadaraya-Watson Kernel Regression Method with Small Samples","authors":"Fengping Li, Yuqing Zhou, Xue Wei","doi":"10.14569/IJARAI.2016.050501","DOIUrl":null,"url":null,"abstract":"Many current regression algorithms have unsatisfactory prediction accuracy with small samples. To solve this problem, a regression algorithm based on Nadaraya-Watson kernel regression (NWKR) is proposed. The proposed method advocates parameter selection directly from the standard deviation of training data, optimized with leave-one-out cross- validation (LOO-CV). Good generalization performance of the proposed parameter selection is demonstrated empirically using small sample regression problems with Gaussian noise. The results show that proposed parameter optimization method is more robust and accurate than other methods for different noise levels and different sample sizes, and indicate the importance of Vapnik’s e-insensitive loss for regression problems with small samples.","PeriodicalId":323606,"journal":{"name":"International Journal of Advanced Research in Artificial Intelligence","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/IJARAI.2016.050501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Many current regression algorithms have unsatisfactory prediction accuracy with small samples. To solve this problem, a regression algorithm based on Nadaraya-Watson kernel regression (NWKR) is proposed. The proposed method advocates parameter selection directly from the standard deviation of training data, optimized with leave-one-out cross- validation (LOO-CV). Good generalization performance of the proposed parameter selection is demonstrated empirically using small sample regression problems with Gaussian noise. The results show that proposed parameter optimization method is more robust and accurate than other methods for different noise levels and different sample sizes, and indicate the importance of Vapnik’s e-insensitive loss for regression problems with small samples.
小样本Nadaraya-Watson核回归方法的参数优化
目前许多回归算法在小样本情况下预测精度不理想。为了解决这一问题,提出了一种基于Nadaraya-Watson核回归(NWKR)的回归算法。该方法主张直接从训练数据的标准差中选择参数,并采用留一交叉验证(LOO-CV)进行优化。利用高斯噪声下的小样本回归问题验证了所提出的参数选择方法具有良好的泛化性能。结果表明,所提出的参数优化方法在不同噪声水平和不同样本量下都比其他方法具有更强的鲁棒性和准确性,表明Vapnik e不敏感损失对于小样本回归问题的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信